cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331251 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives shortest side i. The other sides are in A331252 and A331253.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 1, 3, 3, 1, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 4, 2, 4, 1, 3, 2, 3, 1, 3, 4, 2, 4, 1, 2, 4, 1, 3, 3, 2, 3, 1, 2, 4, 1, 4, 4, 5, 2, 3, 4, 2, 1, 3, 3, 1, 2, 5, 4, 2, 1, 3, 4, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 5, 3, 4, 1, 5
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of first triangles:
   n
   | 16*A^2
   |    | i .... (this sequence)
   |    | | j .. (A331252)
   |    | | | k  (A331253)
   |    | | | |
   1    3 1 1 1
   2   15 1 2 2
   3   35 1 3 3
   4   48 2 2 2
   5   63 1 4 4
   6   63 2 2 3
   7   99 1 5 5
   8  128 2 3 3
   9  135 2 3 4
  10  143 1 6 6
  11  195 1 7 7
		

Crossrefs

Cf. A331252 (middle side j), A331253 (longest side k).

A331250 a(n) = number of triangles with integer sides i <= j <= k with area <= n.

Original entry on oeis.org

2, 6, 10, 15, 21, 28, 35, 44, 52, 63, 71, 84, 92, 105, 118, 128, 143, 159, 173, 183, 200, 214, 231, 248, 264, 280, 301, 316, 332, 356, 370, 394, 414, 428, 451, 475, 494, 514, 535, 557, 580, 607, 624, 645, 678, 697, 718, 748, 770, 794, 822, 845, 873, 900, 927
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Examples

			The sorted list of areas A_k = A(A331251(k), A331252(k), A331253(k)), rounded to 10^-4, starts:: {0.43301, 0.96825, 1.4790, 1.7321, 1.9843, 1.9843, 2.4875, 2.8284, 2.9047, 2.9896, 3.4911, 3.7997, 3.8730, 3.8971, 3.9922, 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937, 5.3327, ...}.
a(1) = 2: 2 triangles (A = 0.43301, 0.96825) with A <= 1,
a(2) = 6: a(1) + 4 triangles (A = 1.4790, 1.7321, 1.9843, 1.9843) with 1 < A <= 2,
a(3) = 10: a(2) + 4 triangles (A = 2.4875, 2.8284, 2.9047, 2.9896) with 2 < A <= 3,
a(4) = 15: a(3) + 5 triangles (A = 3.4911, 3.7997, 3.8730, 3.8971, 3.9922) with 3 < A <= 4,
a(5) = 21: a(4) + 6 triangles (A = 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937) with 4 < A <= 5.
		

Crossrefs

Programs

  • Python
    from itertools import count
    def A331250(n):
        m, c = n**2<<4, 0
        for k in count(1):
            if (k**2<<2) - 1 > m:
                break
            for j in range((k>>1)+1,k+1):
                for i in range(k-j+1,j+1):
                    if ((-i + j + k)*(i - j + k)*(i + j - k)*(i + j + k)) > m:
                        break
                    c += 1
        return c # Chai Wah Wu, Aug 25 2023

Formula

Area A of a triangle with sides a, b, c:
A(a, b, c) = sqrt(s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.

A135622 16*Area^2 of integer triangles [A070080(n),A070081(n),A070082(n)].

Original entry on oeis.org

3, 15, 48, 35, 63, 128, 63, 135, 243, 240, 320, 99, 231, 275, 495, 384, 576, 768, 143, 351, 455, 819, 975, 560, 896, 1008, 1344, 195, 495, 675, 1215, 735, 1575, 1875, 768, 1280, 1536, 2048, 2304, 255, 663, 935, 1683, 1071, 2295, 2499, 2975, 1008, 1728
Offset: 1

Views

Author

Franz Vrabec, Feb 29 2008

Keywords

Examples

			A070080(4)=1, A070081(4)=3, A070082(4)=3, so a(4)=(1+3+3)*(-1+3+3)*(1-3+3)*(1+3-3)=35.
		

Crossrefs

See the formula section for the relationships with A070080, A070081, A070082, A070086.
Cf. A317182 (range of values), A331011 (nonunique values), A331250 (counts triangles by area).
Cf. A316853 (with terms ordered as for A316841), and using this order for other sets of triangles: A046131, A055595, A070786.

Formula

a(n)=(u+v+w)*(-u+v+w)*(u-v+w)*(u+v-w), where u=A070080(n), v=A070081(n), w=A070082(n).
A070086(n) = round(sqrt(a(n))/4).

A331012 16 * squared area of triangles with integer sides i <= j <= k, such that more triples of sides produce the same area as for any smaller area.

Original entry on oeis.org

3, 63, 1575, 5760, 24255, 51975, 80640, 172800, 322560, 403200, 1209600, 2822400, 4435200, 8870400, 15523200, 17740800, 53222400, 125798400, 146764800
Offset: 1

Views

Author

Hugo Pfoertner, Jan 07 2020

Keywords

Comments

The corresponding record counts of triangles are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20, 26, 30, 34, 35, ... .
Conjectured further terms are 226195200 (42 representations), 230630400 (52 representations), 372556800 (55 representations).

Examples

			See A331011.
		

Crossrefs

Showing 1-4 of 4 results.