cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A331252 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives middle side j. The other sides are in A331251 and A331253.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 3, 3, 6, 7, 4, 4, 3, 8, 3, 3, 9, 5, 5, 10, 4, 11, 6, 4, 6, 12, 4, 7, 13, 5, 4, 7, 4, 14, 5, 8, 5, 15, 6, 4, 8, 4, 16, 9, 5, 17, 6, 7, 9, 6, 18, 10, 5, 19, 6, 5, 5, 11, 8, 5, 10, 20, 7, 7, 21, 12, 5, 7, 11, 22, 9, 6, 6, 23, 6, 13, 8, 8, 12
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			See A331251.
		

Crossrefs

Cf. A331251 (shortest side), A331253 (longest side).

A331253 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives longest side k. The other sides are in A331251 and A331252.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 3, 4, 6, 7, 5, 4, 3, 8, 5, 4, 9, 6, 5, 10, 6, 11, 7, 4, 6, 12, 5, 8, 13, 7, 7, 7, 4, 14, 5, 9, 6, 15, 8, 5, 8, 6, 16, 10, 8, 17, 6, 9, 9, 7, 18, 11, 5, 19, 9, 7, 9, 12, 10, 6, 10, 20, 7, 8, 21, 13, 5, 10, 11, 22, 11, 6, 10, 23, 8, 14, 8, 9
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			See A331251.
		

Crossrefs

Cf. A331251 (shortest side), A331252 (middle side).

A070080 Smallest side of integer triangles [a(n) <= A070081(n) <= A070082(n)], sorted by perimeter, lexicographically ordered.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 3, 2, 3, 4, 1, 2, 3, 3, 4, 2, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 3, 4, 4, 5, 5, 2, 3, 4, 4, 5, 5, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 2, 3, 4, 4, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Cf. A316841, A316843, A316844, A316845 (sides (i,j,k) with j + k > i >= j >= k >= 1).
Cf. A331244, A331245, A331246 (similar, but triangles sorted by radius of enclosing circle), A331251, A331252, A331253 (triangles sorted by area), A331254, A331255, A331256 (triangles sorted by radius of circumcircle).

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 1]] (* Jean-François Alcover, Jun 12 2012, updated Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070082(n) - A070081(n).

A010466 Decimal expansion of square root of 8.

Original entry on oeis.org

2, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7
Offset: 1

Views

Author

Keywords

Comments

Sqrt(8) = 2*sqrt(2) is the length of the longest (rigid) ladder that can be carried horizontally around a right angled corner in a hallway of unit width. - Lekraj Beedassy, Apr 19 2006
Continued fraction expansion is 2 followed by {1, 4} repeated. - Harry J. Smith, Jun 05 2009
This is the second Lagrange number. - Alonso del Arte, Dec 06 2011
Also 2*sqrt(2) is the ratio of the perimeter of a square to its diameter (diagonal length). - Rick L. Shepherd, Dec 29 2016
Uchiyama shows that every interval (n, n + c*n^(1/4)) contains an integer that is the sum of two squares, where c = 2^(3/2). - Michel Marcus, Jan 03 2018
This is the area of the eighth-smallest triangle with integer side lengths (2, 3, 3), or the seventh-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020
Diameter of a sphere whose surface area equals 8*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Feb 13 2020
Sqrt(8) = area between the curves y = sin(x) and y = cos(x) for Pi/4 < x < 5 Pi/4; this is one of infinitely many congruent convex regions bounded by the two curves. - Clark Kimberling, May 03 2020
Area of the regular 8-gon with circumradius =1. - R. J. Mathar, Aug 24 2023

Examples

			2.828427124746190097603377448419396157139343750753896146353359475981464...
Sqrt(8) = sqrt(1+2*i*sqrt(2)) + sqrt(1-2*i*sqrt(2)) = sqrt(1/2+2*i*sqrt(3)) + sqrt(1/2-2*i*sqrt(3)), where i=sqrt(-1). - _Bruno Berselli_, Nov 20 2012
1 + 3/4 + 3*5/(4*8) + 3*5*7/(4*8*12) + 3*5*7*9/(4*8*12*16) + ... - _Bruno Berselli_, Mar 16 2014
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 187.
  • S. R. Finch, Moving Sofa Constant, Sect. 8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.

Crossrefs

Cf. A040005 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(8); // Vincenzo Librandi, Feb 13 2020
  • Maple
    evalf(2^(3/2)) ; # R. J. Mathar, Jul 15 2013
  • Mathematica
    RealDigits[N[Sqrt[8],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(8); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010466.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    

Formula

Equals 1 + Sum_{n>=1} ( Product_{k=1..n} (2k+1)/(4k) ). - Bruno Berselli, Mar 16 2014
Equals 2*A002193. - R. J. Mathar, Jan 14 2021
From Peter Bala, Mar 01 2022: (Start)
Equals 3*Sum_{n >= 0} (1/(4*n+1) - 1/(4*n-3))*binomial(1/2,n). Cf. A002580 and A175576.
Equals 4*hypergeom([-1/2, -3/4], [5/4], -1). (End)
Equals 8 * A020765. - R. J. Mathar, Aug 24 2023

A140239 Decimal expansion of 3*sqrt(15)/4.

Original entry on oeis.org

2, 9, 0, 4, 7, 3, 7, 5, 0, 9, 6, 5, 5, 5, 6, 2, 6, 6, 3, 8, 8, 4, 4, 4, 9, 0, 4, 9, 8, 3, 6, 7, 9, 9, 7, 0, 8, 1, 2, 4, 6, 9, 1, 2, 7, 8, 9, 6, 8, 6, 9, 3, 1, 1, 9, 9, 4, 0, 6, 8, 0, 3, 2, 4, 5, 8, 5, 1, 1, 2, 3, 1, 8, 9, 5, 2, 7, 3, 4, 2, 7, 5, 1, 3, 9, 4, 6, 5, 5, 3, 2, 6, 4, 4, 0, 0, 5, 1, 3, 8, 4, 3, 7, 2, 2
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Area of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
This is the area of the ninth-smallest triangle with integer side lengths, or the eighth-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020

Examples

			2.90473750965556266388444904983679970812469127896869311994068032458511231895...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Sqrt[15])/4,10,120][[1]] (* Harvey P. Dale, Apr 03 2013 *)

Formula

3*sqrt(15)/4 = 3*A010472/4.

A331244 Triangles with integer sides i <= j <= k sorted by radius of enclosing circle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331245 and A331246.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 4, 2, 3, 3, 1, 2, 4, 3, 4, 5, 2, 3, 3, 4, 1, 4, 2, 3, 5, 4, 5, 6, 2, 3, 3, 4, 4, 5, 4, 1, 2, 5, 3, 4, 6, 5, 6, 2, 3, 3, 4, 4, 5, 5, 4, 1, 6, 2, 5, 7, 3, 4, 6, 5, 7, 6, 7, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 1, 5, 2, 3, 7, 6, 4
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Comments

The enclosing circle differs from the circumcircle by limiting the radius to (longest side)/2 for obtuse triangles, i.e., those with i^2 + j^2 < k^2.

Examples

			List of triangles begins:
   n
   |     R^2
   |     |    i .... (this sequence)
   |     |    | j .. (A331245)
   |     |    | | k  (A331246)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4    9/ 4  2 2 3  obtuse
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8    4/ 1  2 3 4  obtuse
   9   81/20  3 3 4
  10  256/63  1 4 4
  11   64/15  2 4 4
  12  256/55  3 4 4
  13   16/ 3  4 4 4
  14   25/ 4  2 4 5  obtuse
  15   25/ 4  3 3 5  obtuse
  16   25/ 4  3 4 5
  17  625/99  1 5 5
		

Crossrefs

A331250 a(n) = number of triangles with integer sides i <= j <= k with area <= n.

Original entry on oeis.org

2, 6, 10, 15, 21, 28, 35, 44, 52, 63, 71, 84, 92, 105, 118, 128, 143, 159, 173, 183, 200, 214, 231, 248, 264, 280, 301, 316, 332, 356, 370, 394, 414, 428, 451, 475, 494, 514, 535, 557, 580, 607, 624, 645, 678, 697, 718, 748, 770, 794, 822, 845, 873, 900, 927
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Examples

			The sorted list of areas A_k = A(A331251(k), A331252(k), A331253(k)), rounded to 10^-4, starts:: {0.43301, 0.96825, 1.4790, 1.7321, 1.9843, 1.9843, 2.4875, 2.8284, 2.9047, 2.9896, 3.4911, 3.7997, 3.8730, 3.8971, 3.9922, 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937, 5.3327, ...}.
a(1) = 2: 2 triangles (A = 0.43301, 0.96825) with A <= 1,
a(2) = 6: a(1) + 4 triangles (A = 1.4790, 1.7321, 1.9843, 1.9843) with 1 < A <= 2,
a(3) = 10: a(2) + 4 triangles (A = 2.4875, 2.8284, 2.9047, 2.9896) with 2 < A <= 3,
a(4) = 15: a(3) + 5 triangles (A = 3.4911, 3.7997, 3.8730, 3.8971, 3.9922) with 3 < A <= 4,
a(5) = 21: a(4) + 6 triangles (A = 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937) with 4 < A <= 5.
		

Crossrefs

Programs

  • Python
    from itertools import count
    def A331250(n):
        m, c = n**2<<4, 0
        for k in count(1):
            if (k**2<<2) - 1 > m:
                break
            for j in range((k>>1)+1,k+1):
                for i in range(k-j+1,j+1):
                    if ((-i + j + k)*(i - j + k)*(i + j - k)*(i + j + k)) > m:
                        break
                    c += 1
        return c # Chai Wah Wu, Aug 25 2023

Formula

Area A of a triangle with sides a, b, c:
A(a, b, c) = sqrt(s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.

A331254 Triangles with integer sides i <= j <= k sorted by radius of circumcircle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331255 and A331256.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 2, 3, 4, 3, 1, 2, 4, 3, 2, 3, 4, 5, 3, 1, 4, 4, 2, 3, 5, 4, 2, 5, 3, 6, 5, 4, 1, 3, 2, 4, 5, 3, 4, 6, 5, 2, 6, 4, 5, 1, 6, 2, 3, 3, 5, 7, 3, 4, 4, 4, 6, 5, 5, 7, 6, 2, 7, 4, 6, 1, 5, 5, 2, 6, 3, 3, 7, 6, 4, 8, 5, 4, 7, 3, 5, 6, 8
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of triangles begins:
   n
   |     R^2 = A331227(n)/A331228(n)
   |     |    i .... (this sequence)
   |     |    | j .. (A331255)
   |     |    | | k  (A331256)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4   16/ 7  2 2 3
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8   81/20  3 3 4
   9  256/63  1 4 4
  10   64/15  2 3 4
  11   64/15  2 4 4
  12  256/55  3 4 4
		

Crossrefs

Cf. A331255 (middle side), A331256 (longest side).

A331247 Numerator of the x-coordinate of the 3rd point (x,y) of the n-th triangle with integer sides i <= j <= k in a list sorted by increasing area, when the triangle is drawn with the shortest side from (0,0) to (0,i) and the middle side from (0,i) to (x,y). x = a(n)/A331248(n), y = sqrt(A331249(n))/A331248(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 1, 1, 11, 1, 1, 13, 1, 3, 1, 25, 8, 1, 15, 1, 1, 29, 1, 17, 3, 1, 1, 3, 19, 1, 11, 49, 1, 2, 1, 3, 21, 10, 1, 37, 25, 1, 9, 1, 23, 55, 1, 3, 41, 1, 11, 1, 25, 2, 1, 61, 5, 81, 27, 15, 27, 1, 1, 3, 4, 1, 29, 5, 67, 1, 1, 49, 2, 89, 1, 11, 31, 3
Offset: 1

Views

Author

Hugo Pfoertner, Jan 23 2020

Keywords

Comments

The side lengths (i,j,k) of the triangles in the list sorted by area are given in A331251, A331252, and A331253.

Examples

			x(n) = a(n) / A331248(n),
y(n) = sqrt(A331249(n)) / A331248(n),
   n i (A331251)
   | | j (A331252)
   | | | k (A331253)
   | | | |    A^2*16
   | | | |    |  a(n) this sequence
   | | | |    |  |  A331248
   | | | |    |  |  |   A331249
   | | | |    |  |  |   |  (x, y)
   1 1 1 1    3  1  2   3  (0.5000, 0.86603)
   2 1 2 2   15  1  2  15  (0.5000, 1.9365)
   3 1 3 3   35  1  2  35  (0.5000, 2.9580)
   4 2 2 2   48  1  1   3  (1.0000, 1.7321)
   5 1 4 4   63  1  2  63  (0.5000, 3.9686)
   6 2 2 3   63  9  4  63  (2.2500, 1.9843)
   7 1 5 5   99  1  2  99  (0.5000, 4.9749)
   8 2 3 3  128  1  1   8  (1.0000, 2.8284)
   9 2 3 4  135 11  4 135  (2.7500, 2.9047)
  10 1 6 6  143  1  2 143  (0.5000, 5.9791)
  11 1 7 7  195  1  2 195  (0.5000, 6.9821)
  12 2 4 5  231 13  4 231  (3.2500, 3.7997)
  13 2 4 4  240  1  1  15  (1.0000, 3.8730)
  14 3 3 3  243  3  2  27  (1.5000, 2.5981)
  ...
  28 3 4 5  576  3  1  16  (3.0000, 4.0000)
		

Crossrefs

A331248 Common denominator of x-coordinate and y-coordinate of 3rd point of triangles with integer sides corresponding to A331247 and A331249.

Original entry on oeis.org

2, 2, 2, 1, 2, 4, 2, 1, 4, 2, 2, 4, 1, 2, 2, 6, 3, 2, 4, 1, 2, 6, 2, 4, 2, 1, 2, 1, 4, 2, 2, 8, 1, 1, 2, 2, 4, 3, 2, 6, 8, 1, 2, 2, 4, 8, 2, 2, 6, 1, 3, 2, 4, 1, 2, 8, 1, 10, 4, 2, 8, 1, 2, 2, 1, 2, 4, 2, 8, 1, 2, 6, 1, 10, 2, 2, 4, 2, 3, 1, 8, 2, 5, 5, 6, 8, 2
Offset: 1

Views

Author

Hugo Pfoertner, Jan 23 2020

Keywords

Examples

			See A331247.
		

Crossrefs

Showing 1-10 of 11 results. Next