cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A140244 Decimal expansion of arccos(-1/4).

Original entry on oeis.org

1, 8, 2, 3, 4, 7, 6, 5, 8, 1, 9, 3, 6, 9, 7, 5, 2, 7, 2, 7, 1, 6, 9, 7, 9, 1, 2, 8, 6, 3, 3, 4, 6, 2, 4, 1, 4, 3, 5, 0, 7, 7, 8, 4, 3, 2, 7, 8, 4, 3, 9, 1, 1, 0, 4, 1, 2, 1, 3, 9, 6, 0, 7, 4, 8, 9, 4, 4, 8, 3, 2, 6, 3, 6, 2, 4, 1, 2, 5, 7, 2, 1, 7, 2, 5, 7, 6, 6, 1, 5, 4, 8, 9, 9, 0, 7, 3, 1, 3, 5, 5, 9, 6, 1, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in radians of the obtuse angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
A140240 + A140242 + A140244 = arccos(7/8) + arccos(11/16) + arccos(-1/4) = Pi.
Arccos(-1/4) is the least positive x for which the function f(x)=cos(x)+cos(2x) attains its minimum value, which is -9/8. - Clark Kimberling, Oct 28 2011

Examples

			1.82347658193697527271697912863346241435077843278439110412139607489448326362...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[-1/4],10,120][[1]] (* Harvey P. Dale, Dec 20 2016 *)
  • PARI
    acos(-1/4)

Formula

arccos(-1/4) = Pi - arcsin(sqrt(15)/4) = Pi - arctan(sqrt(15)).

A140246 Decimal expansion of sqrt(15)/6.

Original entry on oeis.org

6, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5, 0
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Inradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. Per the Weisstein link, the inradius is the area divided by the semiperimeter.

Examples

			0.64549722436790281419654423329706660180548695088193180443126229435224718198...
		

Crossrefs

Equals sqrt(A331257(8)/A331258(8)) (squared inradii of triangles with integer sides).

Programs

  • Mathematica
    RealDigits[Sqrt[15]/6,10,120][[1]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    sqrt(15)/6

Formula

sqrt(15)/6 = A010472/6 = 2*A140239/9.

A140248 Decimal expansion of 0.3 * sqrt(15).

Original entry on oeis.org

1, 1, 6, 1, 8, 9, 5, 0, 0, 3, 8, 6, 2, 2, 2, 5, 0, 6, 5, 5, 5, 3, 7, 7, 9, 6, 1, 9, 9, 3, 4, 7, 1, 9, 8, 8, 3, 2, 4, 9, 8, 7, 6, 5, 1, 1, 5, 8, 7, 4, 7, 7, 2, 4, 7, 9, 7, 6, 2, 7, 2, 1, 2, 9, 8, 3, 4, 0, 4, 4, 9, 2, 7, 5, 8, 1, 0, 9, 3, 7, 1, 0, 0, 5, 5, 7, 8, 6, 2, 1, 3, 0, 5, 7, 6, 0, 2, 0, 5, 5, 3, 7, 4, 8, 9
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 2 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.
Multiplied by 10, this is sqrt(135). - Alonso del Arte, Jan 06 2013

Examples

			1.16189500386222506555377961993471988324987651158747724797627212983404492758...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/10)Sqrt[15], 10, 105][[1]] (* Alonso del Arte, Jan 06 2013 *)
  • PARI
    0.3*sqrt(15)

Formula

0.3*sqrt(15) = 0.3*A010472 = 0.4*A140239 = 0.6*A088543 = 0.2*A140249.

A140245 Decimal expansion of 180*arccos(-1/4)/Pi.

Original entry on oeis.org

1, 0, 4, 4, 7, 7, 5, 1, 2, 1, 8, 5, 9, 2, 9, 9, 2, 3, 8, 7, 8, 7, 7, 1, 0, 3, 4, 7, 9, 9, 1, 2, 7, 1, 6, 6, 0, 0, 5, 1, 3, 1, 5, 9, 7, 6, 2, 4, 5, 5, 6, 6, 1, 6, 4, 7, 6, 0, 5, 0, 1, 1, 8, 0, 0, 8, 8, 5, 1, 2, 9, 3, 5, 8, 0, 7, 2, 7, 4, 5, 1, 5, 6, 7, 4, 5, 8, 9, 0, 9, 7, 9, 3, 3, 3, 5, 7, 1, 8, 3, 2, 5, 8, 5, 8
Offset: 3

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the obtuse angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			104.477512185929923878771034799127166005131597624556616476050118008851293580...
		

Crossrefs

Programs

  • PARI
    180*acos(-1/4)/Pi

Formula

180*arccos(-1/4)/Pi = 180*A140244/Pi.

A140247 Decimal expansion of 8/sqrt(15).

Original entry on oeis.org

2, 0, 6, 5, 5, 9, 1, 1, 1, 7, 9, 7, 7, 2, 8, 9, 0, 0, 5, 4, 2, 8, 9, 4, 1, 5, 4, 6, 5, 5, 0, 6, 1, 3, 1, 2, 5, 7, 7, 7, 5, 5, 8, 2, 4, 2, 8, 2, 2, 1, 8, 1, 7, 7, 4, 1, 8, 0, 0, 3, 9, 3, 4, 1, 9, 2, 7, 1, 9, 0, 9, 8, 2, 3, 6, 6, 3, 8, 8, 8, 1, 7, 8, 7, 6, 9, 5, 3, 2, 6, 7, 6, 5, 7, 9, 5, 9, 2, 0, 9, 5, 5, 5, 3, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Circumradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			2.06559111797728900542894154655061312577755824282218177418003934192719098236...
		

Crossrefs

Equals sqrt(A331227(10)/A331228(10)) = sqrt(A331227(11)/A331228(11)), A331254, A331255, A331256 (list of triangles with integer sides sorted by circumradius).

Programs

  • Mathematica
    RealDigits[8/Sqrt[15],10,120][[1]] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    8/sqrt(15)

Formula

8/sqrt(15) = 8/A010472.

A140249 Decimal expansion of 3*sqrt(15)/2.

Original entry on oeis.org

5, 8, 0, 9, 4, 7, 5, 0, 1, 9, 3, 1, 1, 1, 2, 5, 3, 2, 7, 7, 6, 8, 8, 9, 8, 0, 9, 9, 6, 7, 3, 5, 9, 9, 4, 1, 6, 2, 4, 9, 3, 8, 2, 5, 5, 7, 9, 3, 7, 3, 8, 6, 2, 3, 9, 8, 8, 1, 3, 6, 0, 6, 4, 9, 1, 7, 0, 2, 2, 4, 6, 3, 7, 9, 0, 5, 4, 6, 8, 5, 5, 0, 2, 7, 8, 9, 3, 1, 0, 6, 5, 2, 8, 8, 0, 1, 0, 2, 7, 6, 8, 7, 4, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 4 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			5.80947501931112532776889809967359941624938255793738623988136064917022463790...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[3 Sqrt[15]/2,10,100]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    3*sqrt(15)/2

Formula

3*sqrt(15)/2 = 3*A010472/2 = 2*A140239 = 3*A088543 = 5*A140248.

A140240 Decimal expansion of arccos(7/8).

Original entry on oeis.org

5, 0, 5, 3, 6, 0, 5, 1, 0, 2, 8, 4, 1, 5, 7, 3, 0, 6, 9, 7, 1, 3, 1, 4, 8, 7, 3, 9, 8, 7, 4, 2, 1, 9, 4, 4, 5, 0, 4, 3, 8, 7, 4, 6, 6, 1, 9, 3, 6, 7, 6, 3, 8, 7, 2, 6, 7, 8, 4, 7, 5, 5, 7, 4, 8, 1, 1, 5, 0, 1, 2, 0, 9, 6, 2, 0, 4, 2, 4, 4, 4, 8, 2, 3, 4, 9, 7, 4, 8, 4, 4, 5, 6, 0, 2, 9, 2, 0, 3, 2, 1, 0, 1, 8, 5
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in radians of the least angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
A140240 + A140242 + A140244 = arccos(7/8) + arccos(11/16) + arccos(-1/4) = Pi.

Examples

			0.50536051028415730697131487398742194450438746619367638726784755748115012096...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[7/8],10,120][[1]] (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    acos(7/8)

Formula

arccos(7/8) = arcsin(sqrt(15)/8) = arctan(sqrt(15)/7).

A140241 Decimal expansion of 180*arccos(7/8)/Pi.

Original entry on oeis.org

2, 8, 9, 5, 5, 0, 2, 4, 3, 7, 1, 8, 5, 9, 8, 4, 7, 7, 5, 7, 5, 4, 2, 0, 6, 9, 5, 9, 8, 2, 5, 4, 3, 3, 2, 0, 1, 0, 2, 6, 3, 1, 9, 5, 2, 4, 9, 1, 1, 3, 2, 3, 2, 9, 5, 2, 1, 0, 0, 2, 3, 6, 0, 1, 7, 7, 0, 2, 5, 8, 7, 1, 6, 1, 4, 5, 4, 9, 0, 3, 1, 3, 4, 9, 1, 7, 8, 1, 9, 5, 8, 6, 6, 7, 1, 4, 3, 6, 6, 5, 1, 7, 1, 6, 3
Offset: 2

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the least angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			28.9550243718598477575420695982543320102631952491132329521002360177025871614...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(180*ArcCos[7/8])/Pi,10,120][[1]] (* Harvey P. Dale, Jul 19 2014 *)
  • PARI
    180*acos(7/8)/Pi

Formula

180*arccos(7/8)/Pi = 180*A140240/Pi.

A140242 Decimal expansion of arccos(11/16).

Original entry on oeis.org

8, 1, 2, 7, 5, 5, 5, 6, 1, 3, 6, 8, 6, 6, 0, 6, 5, 8, 7, 7, 4, 3, 4, 9, 3, 8, 0, 6, 5, 8, 6, 1, 8, 5, 2, 5, 3, 4, 2, 0, 0, 3, 5, 0, 0, 3, 9, 7, 0, 3, 8, 3, 2, 9, 5, 8, 5, 7, 0, 0, 9, 5, 9, 9, 3, 2, 1, 8, 3, 0, 2, 1, 7, 0, 0, 0, 4, 0, 8, 3, 2, 0, 7, 8, 7, 7, 1, 1, 8, 5, 9, 8, 7, 0, 1, 4, 7, 2, 9, 1, 7, 5, 7, 9, 6
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in radians of the larger acute angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
A140240 + A140242 + A140244 = arccos(7/8) + arccos(11/16) + arccos(-1/4) = Pi.

Examples

			0.81275556136866065877434938065861852534200350039703832958570095993218302170...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[11/16],10,120][[1]] (* Harvey P. Dale, Aug 15 2024 *)
  • PARI
    acos(11/16)

Formula

arccos(11/16) = arcsin(3*sqrt(15)/16) = arctan(3*sqrt(15)/11).

A140243 Decimal expansion of 180*arccos(11/16)/Pi.

Original entry on oeis.org

4, 6, 5, 6, 7, 4, 6, 3, 4, 4, 2, 2, 1, 0, 2, 2, 8, 3, 6, 3, 6, 8, 6, 8, 9, 5, 6, 0, 2, 6, 1, 8, 5, 0, 1, 9, 8, 4, 6, 0, 5, 2, 0, 7, 1, 2, 6, 3, 3, 0, 1, 5, 0, 5, 7, 1, 8, 4, 9, 6, 4, 5, 9, 7, 3, 4, 4, 6, 1, 1, 9, 2, 5, 7, 8, 1, 7, 6, 4, 5, 2, 9, 7, 6, 2, 3, 2, 7, 0, 6, 1, 9, 9, 9, 2, 8, 4, 5, 0, 2, 2, 4, 2, 5, 4
Offset: 2

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the larger acute angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			46.5674634422102283636868956026185019846052071263301505718496459734461192578...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[180 ArcCos[11/16]/Pi,10,120][[1]] (* Harvey P. Dale, Jul 07 2022 *)
  • PARI
    180*acos(11/16)/Pi

Formula

180*arccos(11/16)/Pi = 180*A140242/Pi.
Showing 1-10 of 15 results. Next