cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A140239 Decimal expansion of 3*sqrt(15)/4.

Original entry on oeis.org

2, 9, 0, 4, 7, 3, 7, 5, 0, 9, 6, 5, 5, 5, 6, 2, 6, 6, 3, 8, 8, 4, 4, 4, 9, 0, 4, 9, 8, 3, 6, 7, 9, 9, 7, 0, 8, 1, 2, 4, 6, 9, 1, 2, 7, 8, 9, 6, 8, 6, 9, 3, 1, 1, 9, 9, 4, 0, 6, 8, 0, 3, 2, 4, 5, 8, 5, 1, 1, 2, 3, 1, 8, 9, 5, 2, 7, 3, 4, 2, 7, 5, 1, 3, 9, 4, 6, 5, 5, 3, 2, 6, 4, 4, 0, 0, 5, 1, 3, 8, 4, 3, 7, 2, 2
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Area of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
This is the area of the ninth-smallest triangle with integer side lengths, or the eighth-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020

Examples

			2.90473750965556266388444904983679970812469127896869311994068032458511231895...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Sqrt[15])/4,10,120][[1]] (* Harvey P. Dale, Apr 03 2013 *)

Formula

3*sqrt(15)/4 = 3*A010472/4.

A140246 Decimal expansion of sqrt(15)/6.

Original entry on oeis.org

6, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5, 0
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Inradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. Per the Weisstein link, the inradius is the area divided by the semiperimeter.

Examples

			0.64549722436790281419654423329706660180548695088193180443126229435224718198...
		

Crossrefs

Equals sqrt(A331257(8)/A331258(8)) (squared inradii of triangles with integer sides).

Programs

  • Mathematica
    RealDigits[Sqrt[15]/6,10,120][[1]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    sqrt(15)/6

Formula

sqrt(15)/6 = A010472/6 = 2*A140239/9.

A140248 Decimal expansion of 0.3 * sqrt(15).

Original entry on oeis.org

1, 1, 6, 1, 8, 9, 5, 0, 0, 3, 8, 6, 2, 2, 2, 5, 0, 6, 5, 5, 5, 3, 7, 7, 9, 6, 1, 9, 9, 3, 4, 7, 1, 9, 8, 8, 3, 2, 4, 9, 8, 7, 6, 5, 1, 1, 5, 8, 7, 4, 7, 7, 2, 4, 7, 9, 7, 6, 2, 7, 2, 1, 2, 9, 8, 3, 4, 0, 4, 4, 9, 2, 7, 5, 8, 1, 0, 9, 3, 7, 1, 0, 0, 5, 5, 7, 8, 6, 2, 1, 3, 0, 5, 7, 6, 0, 2, 0, 5, 5, 3, 7, 4, 8, 9
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 2 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.
Multiplied by 10, this is sqrt(135). - Alonso del Arte, Jan 06 2013

Examples

			1.16189500386222506555377961993471988324987651158747724797627212983404492758...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/10)Sqrt[15], 10, 105][[1]] (* Alonso del Arte, Jan 06 2013 *)
  • PARI
    0.3*sqrt(15)

Formula

0.3*sqrt(15) = 0.3*A010472 = 0.4*A140239 = 0.6*A088543 = 0.2*A140249.

A140245 Decimal expansion of 180*arccos(-1/4)/Pi.

Original entry on oeis.org

1, 0, 4, 4, 7, 7, 5, 1, 2, 1, 8, 5, 9, 2, 9, 9, 2, 3, 8, 7, 8, 7, 7, 1, 0, 3, 4, 7, 9, 9, 1, 2, 7, 1, 6, 6, 0, 0, 5, 1, 3, 1, 5, 9, 7, 6, 2, 4, 5, 5, 6, 6, 1, 6, 4, 7, 6, 0, 5, 0, 1, 1, 8, 0, 0, 8, 8, 5, 1, 2, 9, 3, 5, 8, 0, 7, 2, 7, 4, 5, 1, 5, 6, 7, 4, 5, 8, 9, 0, 9, 7, 9, 3, 3, 3, 5, 7, 1, 8, 3, 2, 5, 8, 5, 8
Offset: 3

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the obtuse angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			104.477512185929923878771034799127166005131597624556616476050118008851293580...
		

Crossrefs

Programs

  • PARI
    180*acos(-1/4)/Pi

Formula

180*arccos(-1/4)/Pi = 180*A140244/Pi.

A140247 Decimal expansion of 8/sqrt(15).

Original entry on oeis.org

2, 0, 6, 5, 5, 9, 1, 1, 1, 7, 9, 7, 7, 2, 8, 9, 0, 0, 5, 4, 2, 8, 9, 4, 1, 5, 4, 6, 5, 5, 0, 6, 1, 3, 1, 2, 5, 7, 7, 7, 5, 5, 8, 2, 4, 2, 8, 2, 2, 1, 8, 1, 7, 7, 4, 1, 8, 0, 0, 3, 9, 3, 4, 1, 9, 2, 7, 1, 9, 0, 9, 8, 2, 3, 6, 6, 3, 8, 8, 8, 1, 7, 8, 7, 6, 9, 5, 3, 2, 6, 7, 6, 5, 7, 9, 5, 9, 2, 0, 9, 5, 5, 5, 3, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Circumradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			2.06559111797728900542894154655061312577755824282218177418003934192719098236...
		

Crossrefs

Equals sqrt(A331227(10)/A331228(10)) = sqrt(A331227(11)/A331228(11)), A331254, A331255, A331256 (list of triangles with integer sides sorted by circumradius).

Programs

  • Mathematica
    RealDigits[8/Sqrt[15],10,120][[1]] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    8/sqrt(15)

Formula

8/sqrt(15) = 8/A010472.

A140249 Decimal expansion of 3*sqrt(15)/2.

Original entry on oeis.org

5, 8, 0, 9, 4, 7, 5, 0, 1, 9, 3, 1, 1, 1, 2, 5, 3, 2, 7, 7, 6, 8, 8, 9, 8, 0, 9, 9, 6, 7, 3, 5, 9, 9, 4, 1, 6, 2, 4, 9, 3, 8, 2, 5, 5, 7, 9, 3, 7, 3, 8, 6, 2, 3, 9, 8, 8, 1, 3, 6, 0, 6, 4, 9, 1, 7, 0, 2, 2, 4, 6, 3, 7, 9, 0, 5, 4, 6, 8, 5, 5, 0, 2, 7, 8, 9, 3, 1, 0, 6, 5, 2, 8, 8, 0, 1, 0, 2, 7, 6, 8, 7, 4, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 4 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			5.80947501931112532776889809967359941624938255793738623988136064917022463790...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[3 Sqrt[15]/2,10,100]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    3*sqrt(15)/2

Formula

3*sqrt(15)/2 = 3*A010472/2 = 2*A140239 = 3*A088543 = 5*A140248.

A129556 Numbers k such that the k-th centered pentagonal number A005891(k) = (5k^2 + 5k + 2)/2 is a square.

Original entry on oeis.org

0, 2, 21, 95, 816, 3626, 31005, 137711, 1177392, 5229410, 44709909, 198579887, 1697799168, 7540806314, 64471658493, 286352060063, 2448225223584, 10873837476098, 92968086837717, 412919472031679, 3530339074609680, 15680066099727722, 134059916748330141
Offset: 1

Views

Author

Alexander Adamchuk, Apr 20 2007

Keywords

Comments

Corresponding numbers m > 0 such that m^2 is a centered pentagonal number are listed in A129557 = {1, 4, 34, 151, 1291, 5734, 49024, ...}.
From Andrea Pinos, Nov 02 2022: (Start)
By definition: 5*T(a(n)) = A129557(n)^2 - 1 where triangular number T(j) = j*(j+1)/2. This implies:
Every odd prime factor of a(n) and d(n)=a(n)+1 is present in b(n)=A129557(n)+1 or in c(n)=A129557(n)-1. (End)
From the law of cosines the non-Pythagorean triple {a(n), a(n)+1=A254332(n), A129557(n+1)} forms a near-isosceles triangle whose angle between the consecutive integer sides is equal to the central angle of the regular pentachoron polytope (4-simplex) (see A140244 and A140245). This implies that the terms {a(n)} are also those numbers k such that 1 + 5*A000217(k) is a square. - Federico Provvedi, Apr 04 2023

Crossrefs

Cf. A005891 (centered pentagonal numbers), A129557 (numbers k>0 such that k^2 is a centered pentagonal number), A221874.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; this sequence for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Maple
    A005891 := proc(n) (5*n^2+5*n+2)/2 ; end: n := 0 : while true do if issqr(A005891(n)) then print(n) ; fi ; n := n+1 ; od : # R. J. Mathar, Jun 06 2007
  • Mathematica
    Do[ f=(5n^2+5n+2)/2; If[ IntegerQ[ Sqrt[f] ], Print[n] ], {n,1,40000} ]
    LinearRecurrence[{1,38,-38,-1,1},{0,2,21,95,816},30] (* Harvey P. Dale, Nov 09 2017 *)
    Table[(((x^(n+2))+(((-1)^n*(x^(2*n+1)+1)-x)/(x^n)))/(x^2+1)-1)/2/.x->3+Sqrt[10],{n,0,50}]//Round (* Federico Provvedi, Apr 04 2023 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,-1,-38,38,1]^(n-1)*[0;2;21;95;816])[1,1] \\ Charles R Greathouse IV, Feb 11 2019

Formula

For n >= 5, a(n) = 38*a(n-2) - a(n-4) + 18. - Max Alekseyev, May 08 2009
G.f.: x^2*(x^3+2*x^2-19*x-2) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Feb 21 2013
a(n) = (A221874(n) - 1) / 2. - Bruno Berselli, Feb 21 2013
From Andrea Pinos, Oct 24 2022: (Start)
The ratios of successive terms converge to two different limits:
lower: D = lim_{n->oo} a(2n)/a(2n-1) = (7+2*sqrt(10))/3;
upper: E = lim_{n->oo} a(2n+1)/a(2n) = (13+4*sqrt(10))/3.
So lim_{n->oo} a(n+2)/a(n) = D*E = 19 + 6*sqrt(10). (End)
a(n) = (x^(2*(n+1)) + (-1)^n*(x^(2*n+1)+1) - x) / (2*x^n*(x^2 + 1)) - (1/2), with x=3+sqrt(10). - Federico Provvedi, Apr 04 2023

Extensions

More terms from R. J. Mathar, Jun 06 2007
Further terms from Max Alekseyev, May 08 2009
a(22)-a(23) from Colin Barker, Feb 21 2013

A140240 Decimal expansion of arccos(7/8).

Original entry on oeis.org

5, 0, 5, 3, 6, 0, 5, 1, 0, 2, 8, 4, 1, 5, 7, 3, 0, 6, 9, 7, 1, 3, 1, 4, 8, 7, 3, 9, 8, 7, 4, 2, 1, 9, 4, 4, 5, 0, 4, 3, 8, 7, 4, 6, 6, 1, 9, 3, 6, 7, 6, 3, 8, 7, 2, 6, 7, 8, 4, 7, 5, 5, 7, 4, 8, 1, 1, 5, 0, 1, 2, 0, 9, 6, 2, 0, 4, 2, 4, 4, 4, 8, 2, 3, 4, 9, 7, 4, 8, 4, 4, 5, 6, 0, 2, 9, 2, 0, 3, 2, 1, 0, 1, 8, 5
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in radians of the least angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
A140240 + A140242 + A140244 = arccos(7/8) + arccos(11/16) + arccos(-1/4) = Pi.

Examples

			0.50536051028415730697131487398742194450438746619367638726784755748115012096...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[7/8],10,120][[1]] (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    acos(7/8)

Formula

arccos(7/8) = arcsin(sqrt(15)/8) = arctan(sqrt(15)/7).

A140241 Decimal expansion of 180*arccos(7/8)/Pi.

Original entry on oeis.org

2, 8, 9, 5, 5, 0, 2, 4, 3, 7, 1, 8, 5, 9, 8, 4, 7, 7, 5, 7, 5, 4, 2, 0, 6, 9, 5, 9, 8, 2, 5, 4, 3, 3, 2, 0, 1, 0, 2, 6, 3, 1, 9, 5, 2, 4, 9, 1, 1, 3, 2, 3, 2, 9, 5, 2, 1, 0, 0, 2, 3, 6, 0, 1, 7, 7, 0, 2, 5, 8, 7, 1, 6, 1, 4, 5, 4, 9, 0, 3, 1, 3, 4, 9, 1, 7, 8, 1, 9, 5, 8, 6, 6, 7, 1, 4, 3, 6, 6, 5, 1, 7, 1, 6, 3
Offset: 2

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the least angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			28.9550243718598477575420695982543320102631952491132329521002360177025871614...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(180*ArcCos[7/8])/Pi,10,120][[1]] (* Harvey P. Dale, Jul 19 2014 *)
  • PARI
    180*acos(7/8)/Pi

Formula

180*arccos(7/8)/Pi = 180*A140240/Pi.

A140242 Decimal expansion of arccos(11/16).

Original entry on oeis.org

8, 1, 2, 7, 5, 5, 5, 6, 1, 3, 6, 8, 6, 6, 0, 6, 5, 8, 7, 7, 4, 3, 4, 9, 3, 8, 0, 6, 5, 8, 6, 1, 8, 5, 2, 5, 3, 4, 2, 0, 0, 3, 5, 0, 0, 3, 9, 7, 0, 3, 8, 3, 2, 9, 5, 8, 5, 7, 0, 0, 9, 5, 9, 9, 3, 2, 1, 8, 3, 0, 2, 1, 7, 0, 0, 0, 4, 0, 8, 3, 2, 0, 7, 8, 7, 7, 1, 1, 8, 5, 9, 8, 7, 0, 1, 4, 7, 2, 9, 1, 7, 5, 7, 9, 6
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in radians of the larger acute angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
A140240 + A140242 + A140244 = arccos(7/8) + arccos(11/16) + arccos(-1/4) = Pi.

Examples

			0.81275556136866065877434938065861852534200350039703832958570095993218302170...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[11/16],10,120][[1]] (* Harvey P. Dale, Aug 15 2024 *)
  • PARI
    acos(11/16)

Formula

arccos(11/16) = arcsin(3*sqrt(15)/16) = arctan(3*sqrt(15)/11).
Showing 1-10 of 12 results. Next