cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A331251 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives shortest side i. The other sides are in A331252 and A331253.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 1, 3, 3, 1, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 4, 2, 4, 1, 3, 2, 3, 1, 3, 4, 2, 4, 1, 2, 4, 1, 3, 3, 2, 3, 1, 2, 4, 1, 4, 4, 5, 2, 3, 4, 2, 1, 3, 3, 1, 2, 5, 4, 2, 1, 3, 4, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 5, 3, 4, 1, 5
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of first triangles:
   n
   | 16*A^2
   |    | i .... (this sequence)
   |    | | j .. (A331252)
   |    | | | k  (A331253)
   |    | | | |
   1    3 1 1 1
   2   15 1 2 2
   3   35 1 3 3
   4   48 2 2 2
   5   63 1 4 4
   6   63 2 2 3
   7   99 1 5 5
   8  128 2 3 3
   9  135 2 3 4
  10  143 1 6 6
  11  195 1 7 7
		

Crossrefs

Cf. A331252 (middle side j), A331253 (longest side k).

A331252 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives middle side j. The other sides are in A331251 and A331253.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 3, 3, 6, 7, 4, 4, 3, 8, 3, 3, 9, 5, 5, 10, 4, 11, 6, 4, 6, 12, 4, 7, 13, 5, 4, 7, 4, 14, 5, 8, 5, 15, 6, 4, 8, 4, 16, 9, 5, 17, 6, 7, 9, 6, 18, 10, 5, 19, 6, 5, 5, 11, 8, 5, 10, 20, 7, 7, 21, 12, 5, 7, 11, 22, 9, 6, 6, 23, 6, 13, 8, 8, 12
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			See A331251.
		

Crossrefs

Cf. A331251 (shortest side), A331253 (longest side).

A070080 Smallest side of integer triangles [a(n) <= A070081(n) <= A070082(n)], sorted by perimeter, lexicographically ordered.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 3, 2, 3, 4, 1, 2, 3, 3, 4, 2, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 3, 4, 4, 5, 5, 2, 3, 4, 4, 5, 5, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 2, 3, 4, 4, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Cf. A316841, A316843, A316844, A316845 (sides (i,j,k) with j + k > i >= j >= k >= 1).
Cf. A331244, A331245, A331246 (similar, but triangles sorted by radius of enclosing circle), A331251, A331252, A331253 (triangles sorted by area), A331254, A331255, A331256 (triangles sorted by radius of circumcircle).

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 1]] (* Jean-François Alcover, Jun 12 2012, updated Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070082(n) - A070081(n).

A331244 Triangles with integer sides i <= j <= k sorted by radius of enclosing circle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331245 and A331246.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 4, 2, 3, 3, 1, 2, 4, 3, 4, 5, 2, 3, 3, 4, 1, 4, 2, 3, 5, 4, 5, 6, 2, 3, 3, 4, 4, 5, 4, 1, 2, 5, 3, 4, 6, 5, 6, 2, 3, 3, 4, 4, 5, 5, 4, 1, 6, 2, 5, 7, 3, 4, 6, 5, 7, 6, 7, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 1, 5, 2, 3, 7, 6, 4
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Comments

The enclosing circle differs from the circumcircle by limiting the radius to (longest side)/2 for obtuse triangles, i.e., those with i^2 + j^2 < k^2.

Examples

			List of triangles begins:
   n
   |     R^2
   |     |    i .... (this sequence)
   |     |    | j .. (A331245)
   |     |    | | k  (A331246)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4    9/ 4  2 2 3  obtuse
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8    4/ 1  2 3 4  obtuse
   9   81/20  3 3 4
  10  256/63  1 4 4
  11   64/15  2 4 4
  12  256/55  3 4 4
  13   16/ 3  4 4 4
  14   25/ 4  2 4 5  obtuse
  15   25/ 4  3 3 5  obtuse
  16   25/ 4  3 4 5
  17  625/99  1 5 5
		

Crossrefs

A331250 a(n) = number of triangles with integer sides i <= j <= k with area <= n.

Original entry on oeis.org

2, 6, 10, 15, 21, 28, 35, 44, 52, 63, 71, 84, 92, 105, 118, 128, 143, 159, 173, 183, 200, 214, 231, 248, 264, 280, 301, 316, 332, 356, 370, 394, 414, 428, 451, 475, 494, 514, 535, 557, 580, 607, 624, 645, 678, 697, 718, 748, 770, 794, 822, 845, 873, 900, 927
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Examples

			The sorted list of areas A_k = A(A331251(k), A331252(k), A331253(k)), rounded to 10^-4, starts:: {0.43301, 0.96825, 1.4790, 1.7321, 1.9843, 1.9843, 2.4875, 2.8284, 2.9047, 2.9896, 3.4911, 3.7997, 3.8730, 3.8971, 3.9922, 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937, 5.3327, ...}.
a(1) = 2: 2 triangles (A = 0.43301, 0.96825) with A <= 1,
a(2) = 6: a(1) + 4 triangles (A = 1.4790, 1.7321, 1.9843, 1.9843) with 1 < A <= 2,
a(3) = 10: a(2) + 4 triangles (A = 2.4875, 2.8284, 2.9047, 2.9896) with 2 < A <= 3,
a(4) = 15: a(3) + 5 triangles (A = 3.4911, 3.7997, 3.8730, 3.8971, 3.9922) with 3 < A <= 4,
a(5) = 21: a(4) + 6 triangles (A = 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937) with 4 < A <= 5.
		

Crossrefs

Programs

  • Python
    from itertools import count
    def A331250(n):
        m, c = n**2<<4, 0
        for k in count(1):
            if (k**2<<2) - 1 > m:
                break
            for j in range((k>>1)+1,k+1):
                for i in range(k-j+1,j+1):
                    if ((-i + j + k)*(i - j + k)*(i + j - k)*(i + j + k)) > m:
                        break
                    c += 1
        return c # Chai Wah Wu, Aug 25 2023

Formula

Area A of a triangle with sides a, b, c:
A(a, b, c) = sqrt(s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.

A331254 Triangles with integer sides i <= j <= k sorted by radius of circumcircle, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives the shortest side i. The other sides are in A331255 and A331256.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 2, 3, 4, 3, 1, 2, 4, 3, 2, 3, 4, 5, 3, 1, 4, 4, 2, 3, 5, 4, 2, 5, 3, 6, 5, 4, 1, 3, 2, 4, 5, 3, 4, 6, 5, 2, 6, 4, 5, 1, 6, 2, 3, 3, 5, 7, 3, 4, 4, 4, 6, 5, 5, 7, 6, 2, 7, 4, 6, 1, 5, 5, 2, 6, 3, 3, 7, 6, 4, 8, 5, 4, 7, 3, 5, 6, 8
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of triangles begins:
   n
   |     R^2 = A331227(n)/A331228(n)
   |     |    i .... (this sequence)
   |     |    | j .. (A331255)
   |     |    | | k  (A331256)
   |     |    | | |
   1    1/ 3  1 1 1
   2   16/15  1 2 2
   3    4/ 3  2 2 2
   4   16/ 7  2 2 3
   5   81/35  1 3 3
   6   81/32  2 3 3
   7    3/ 1  3 3 3
   8   81/20  3 3 4
   9  256/63  1 4 4
  10   64/15  2 3 4
  11   64/15  2 4 4
  12  256/55  3 4 4
		

Crossrefs

Cf. A331255 (middle side), A331256 (longest side).

A331247 Numerator of the x-coordinate of the 3rd point (x,y) of the n-th triangle with integer sides i <= j <= k in a list sorted by increasing area, when the triangle is drawn with the shortest side from (0,0) to (0,i) and the middle side from (0,i) to (x,y). x = a(n)/A331248(n), y = sqrt(A331249(n))/A331248(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 1, 1, 11, 1, 1, 13, 1, 3, 1, 25, 8, 1, 15, 1, 1, 29, 1, 17, 3, 1, 1, 3, 19, 1, 11, 49, 1, 2, 1, 3, 21, 10, 1, 37, 25, 1, 9, 1, 23, 55, 1, 3, 41, 1, 11, 1, 25, 2, 1, 61, 5, 81, 27, 15, 27, 1, 1, 3, 4, 1, 29, 5, 67, 1, 1, 49, 2, 89, 1, 11, 31, 3
Offset: 1

Views

Author

Hugo Pfoertner, Jan 23 2020

Keywords

Comments

The side lengths (i,j,k) of the triangles in the list sorted by area are given in A331251, A331252, and A331253.

Examples

			x(n) = a(n) / A331248(n),
y(n) = sqrt(A331249(n)) / A331248(n),
   n i (A331251)
   | | j (A331252)
   | | | k (A331253)
   | | | |    A^2*16
   | | | |    |  a(n) this sequence
   | | | |    |  |  A331248
   | | | |    |  |  |   A331249
   | | | |    |  |  |   |  (x, y)
   1 1 1 1    3  1  2   3  (0.5000, 0.86603)
   2 1 2 2   15  1  2  15  (0.5000, 1.9365)
   3 1 3 3   35  1  2  35  (0.5000, 2.9580)
   4 2 2 2   48  1  1   3  (1.0000, 1.7321)
   5 1 4 4   63  1  2  63  (0.5000, 3.9686)
   6 2 2 3   63  9  4  63  (2.2500, 1.9843)
   7 1 5 5   99  1  2  99  (0.5000, 4.9749)
   8 2 3 3  128  1  1   8  (1.0000, 2.8284)
   9 2 3 4  135 11  4 135  (2.7500, 2.9047)
  10 1 6 6  143  1  2 143  (0.5000, 5.9791)
  11 1 7 7  195  1  2 195  (0.5000, 6.9821)
  12 2 4 5  231 13  4 231  (3.2500, 3.7997)
  13 2 4 4  240  1  1  15  (1.0000, 3.8730)
  14 3 3 3  243  3  2  27  (1.5000, 2.5981)
  ...
  28 3 4 5  576  3  1  16  (3.0000, 4.0000)
		

Crossrefs

A331248 Common denominator of x-coordinate and y-coordinate of 3rd point of triangles with integer sides corresponding to A331247 and A331249.

Original entry on oeis.org

2, 2, 2, 1, 2, 4, 2, 1, 4, 2, 2, 4, 1, 2, 2, 6, 3, 2, 4, 1, 2, 6, 2, 4, 2, 1, 2, 1, 4, 2, 2, 8, 1, 1, 2, 2, 4, 3, 2, 6, 8, 1, 2, 2, 4, 8, 2, 2, 6, 1, 3, 2, 4, 1, 2, 8, 1, 10, 4, 2, 8, 1, 2, 2, 1, 2, 4, 2, 8, 1, 2, 6, 1, 10, 2, 2, 4, 2, 3, 1, 8, 2, 5, 5, 6, 8, 2
Offset: 1

Views

Author

Hugo Pfoertner, Jan 23 2020

Keywords

Examples

			See A331247.
		

Crossrefs

A331249 Squared numerator of y-coordinate of 3rd point of n-th triangle with integer sides in a sorted list corresponding to A331247. The y-coordinate is given by sqrt(a(n))/A331248(n).

Original entry on oeis.org

3, 15, 35, 3, 63, 63, 99, 8, 135, 143, 195, 231, 15, 27, 255, 275, 80, 323, 351, 24, 399, 455, 483, 495, 55, 35, 575, 16, 663, 675, 75, 735, 48, 12, 783, 91, 855, 224, 899, 935, 975, 63, 63, 1023, 1071, 1071, 1155, 135, 1235, 80, 320, 1295, 1311, 21, 1443, 1463
Offset: 1

Views

Author

Hugo Pfoertner, Jan 23 2020

Keywords

Examples

			a(1) = 3 because the 3rd point of the smallest triangle with integer sides (1,1,1) is at (x,y)=(1/2,sqrt(3)/2), A331247(1)=1, A331248(1)=2.
See A331247 for an extended list.
		

Crossrefs

Showing 1-9 of 9 results.