cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A316841 Three-column table read by rows giving integer sides of proper triangles (i,j,k) with i >= j >= k >= 1, j+k > i.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 4, 3, 2, 4, 3, 3, 4, 4, 1, 4, 4, 2, 4, 4, 3, 4, 4, 4, 5, 3, 3, 5, 4, 2, 5, 4, 3, 5, 4, 4, 5, 5, 1, 5, 5, 2, 5, 5, 3, 5, 5, 4, 5, 5, 5, 6, 4, 3, 6, 4, 4, 6, 5, 2, 6, 5, 3, 6, 5, 4, 6, 5, 5, 6, 6, 1, 6, 6, 2, 6, 6, 3, 6, 6, 4, 6, 6, 5, 6, 6, 6, 7, 4, 4, 7, 5, 3, 7, 5, 4, 7, 5, 5, 7, 6, 2, 7, 6, 3, 7, 6, 4, 7, 6, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2018, following a suggestion from Donald S. McDonald

Keywords

Examples

			Table begins (imprimitive triples are labeled i):
[1,1,1],
[2,2,1],
[2,2,2],i
[3,2,2],
[3,3,1],
[3,3,2],
[3,3,3],i
[4,3,2],
[4,3,3],
[4,4,1],
[4,4,2],i
[4,4,3],
[4,4,4],i
[5,3,3],
...
		

Crossrefs

There are A002620(k+1) rows that begin with k.
The three columns are A316843, A316844, A316845.
A316849 is a compressed version.
See A316842 for primitive triples.
See A316851 and A316853 & A317182 for perimeter and area.
Other related sequences: A051493, A070080, A070081, A070082, A070110.

Programs

  • PARI
    for(i=1,6, for(j=1,i, for(k=1,j, if(j+k>i, print1(i,", ",j,", ",k,", "))))) \\ Hugo Pfoertner, Jan 25 2020

A331251 Triangles with integer sides i <= j <= k sorted by area, and, in case of ties, lexicographically by side lengths (smallest first). The sequence gives shortest side i. The other sides are in A331252 and A331253.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 1, 3, 3, 1, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 4, 2, 4, 1, 3, 2, 3, 1, 3, 4, 2, 4, 1, 2, 4, 1, 3, 3, 2, 3, 1, 2, 4, 1, 4, 4, 5, 2, 3, 4, 2, 1, 3, 3, 1, 2, 5, 4, 2, 1, 3, 4, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 5, 3, 4, 1, 5
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			List of first triangles:
   n
   | 16*A^2
   |    | i .... (this sequence)
   |    | | j .. (A331252)
   |    | | | k  (A331253)
   |    | | | |
   1    3 1 1 1
   2   15 1 2 2
   3   35 1 3 3
   4   48 2 2 2
   5   63 1 4 4
   6   63 2 2 3
   7   99 1 5 5
   8  128 2 3 3
   9  135 2 3 4
  10  143 1 6 6
  11  195 1 7 7
		

Crossrefs

Cf. A331252 (middle side j), A331253 (longest side k).

A331250 a(n) = number of triangles with integer sides i <= j <= k with area <= n.

Original entry on oeis.org

2, 6, 10, 15, 21, 28, 35, 44, 52, 63, 71, 84, 92, 105, 118, 128, 143, 159, 173, 183, 200, 214, 231, 248, 264, 280, 301, 316, 332, 356, 370, 394, 414, 428, 451, 475, 494, 514, 535, 557, 580, 607, 624, 645, 678, 697, 718, 748, 770, 794, 822, 845, 873, 900, 927
Offset: 1

Views

Author

Hugo Pfoertner, Jan 20 2020

Keywords

Examples

			The sorted list of areas A_k = A(A331251(k), A331252(k), A331253(k)), rounded to 10^-4, starts:: {0.43301, 0.96825, 1.4790, 1.7321, 1.9843, 1.9843, 2.4875, 2.8284, 2.9047, 2.9896, 3.4911, 3.7997, 3.8730, 3.8971, 3.9922, 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937, 5.3327, ...}.
a(1) = 2: 2 triangles (A = 0.43301, 0.96825) with A <= 1,
a(2) = 6: a(1) + 4 triangles (A = 1.4790, 1.7321, 1.9843, 1.9843) with 1 < A <= 2,
a(3) = 10: a(2) + 4 triangles (A = 2.4875, 2.8284, 2.9047, 2.9896) with 2 < A <= 3,
a(4) = 15: a(3) + 5 triangles (A = 3.4911, 3.7997, 3.8730, 3.8971, 3.9922) with 3 < A <= 4,
a(5) = 21: a(4) + 6 triangles (A = 4.1458, 4.4721, 4.4931, 4.6837, 4.8990, 4.9937) with 4 < A <= 5.
		

Crossrefs

Programs

  • Python
    from itertools import count
    def A331250(n):
        m, c = n**2<<4, 0
        for k in count(1):
            if (k**2<<2) - 1 > m:
                break
            for j in range((k>>1)+1,k+1):
                for i in range(k-j+1,j+1):
                    if ((-i + j + k)*(i - j + k)*(i + j - k)*(i + j + k)) > m:
                        break
                    c += 1
        return c # Chai Wah Wu, Aug 25 2023

Formula

Area A of a triangle with sides a, b, c:
A(a, b, c) = sqrt(s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.

A135622 16*Area^2 of integer triangles [A070080(n),A070081(n),A070082(n)].

Original entry on oeis.org

3, 15, 48, 35, 63, 128, 63, 135, 243, 240, 320, 99, 231, 275, 495, 384, 576, 768, 143, 351, 455, 819, 975, 560, 896, 1008, 1344, 195, 495, 675, 1215, 735, 1575, 1875, 768, 1280, 1536, 2048, 2304, 255, 663, 935, 1683, 1071, 2295, 2499, 2975, 1008, 1728
Offset: 1

Views

Author

Franz Vrabec, Feb 29 2008

Keywords

Examples

			A070080(4)=1, A070081(4)=3, A070082(4)=3, so a(4)=(1+3+3)*(-1+3+3)*(1-3+3)*(1+3-3)=35.
		

Crossrefs

See the formula section for the relationships with A070080, A070081, A070082, A070086.
Cf. A317182 (range of values), A331011 (nonunique values), A331250 (counts triangles by area).
Cf. A316853 (with terms ordered as for A316841), and using this order for other sets of triangles: A046131, A055595, A070786.

Formula

a(n)=(u+v+w)*(-u+v+w)*(u-v+w)*(u+v-w), where u=A070080(n), v=A070081(n), w=A070082(n).
A070086(n) = round(sqrt(a(n))/4).

A331011 16 * squared area of triangles with integer sides i <= j <= k, such that more than one ordered triple of sides produces the same area.

Original entry on oeis.org

63, 495, 675, 768, 1008, 1071, 1280, 1575, 2304, 2499, 2835, 2880, 2975, 3135, 3456, 3591, 4095, 4275, 4455, 4608, 4928, 5103, 5760, 5775, 6615, 6656, 6831, 6975, 7040, 7488, 7875, 7920, 8064, 8415, 8448, 8463, 8775, 8855, 8960, 9135, 9216, 9600, 9984, 10535
Offset: 1

Views

Author

Hugo Pfoertner, Jan 06 2020

Keywords

Examples

			a(1) = 63: triangles (1,4,4) and (2,2,3) both have squared area 3.9375 = 63/16. All smaller squared area values A(i,j,k) correspond to unique triples of side lengths: A(1,1,1) = 0.1875 = 3/16, A(1,2,2) = 0.9375 = 15/16, A(1,3,3) = 2.1875 = 35/16, A(2,2,2) = 3 = 48/16.
a(2) = 495: A(2,6,7) = A(3,4,4) = 30.9375 = 495/16.
a(8) = 1575: A(2,11,12) = A(3,8,10) = A(4,5,6) = 98.4375 = 1575/16.
a(23) = 5760: A(2,19,19) = A(3,13,14) = A(6,7,7) = A(6,7,11) = 360 = 5760/16.
		

Crossrefs

Subset of A317182.
Nonunique terms of A135622 or A316853.
Cf. A331012.

A331012 16 * squared area of triangles with integer sides i <= j <= k, such that more triples of sides produce the same area as for any smaller area.

Original entry on oeis.org

3, 63, 1575, 5760, 24255, 51975, 80640, 172800, 322560, 403200, 1209600, 2822400, 4435200, 8870400, 15523200, 17740800, 53222400, 125798400, 146764800
Offset: 1

Views

Author

Hugo Pfoertner, Jan 07 2020

Keywords

Comments

The corresponding record counts of triangles are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20, 26, 30, 34, 35, ... .
Conjectured further terms are 226195200 (42 representations), 230630400 (52 representations), 372556800 (55 representations).

Examples

			See A331011.
		

Crossrefs

A331222 a(n) = numerator of squared radius R^2 of the circumcircle of the n-th non-obtuse triangle with integer sides i <= j <= k <= sqrt(i^2 + j^2) in a list of such triangles, the list being sorted by increasing size of R. Denominators are A331223.

Original entry on oeis.org

1, 16, 4, 81, 81, 3, 81, 256, 64, 256, 16, 25, 625, 625, 256, 625, 625, 25, 1296, 64, 324, 48, 625, 81, 1296, 12, 625, 3136, 2401, 2401, 1225, 2401, 2401, 1296, 2401, 2401, 50176, 4096, 81, 1024, 49, 49, 4096, 256, 256, 4096, 2401, 1024, 4096, 35721, 6561
Offset: 1

Views

Author

Hugo Pfoertner, Jan 12 2020

Keywords

Comments

Radii shared by more than one triangle are not removed. The first occurrence is for squared radius 49/3 at positions n = 41 and n = 42.

Examples

			The first terms b(n) = a(n)/A331223(n) correspond to the following triangles (i, j, k):
  b(1) = 1/3: (1,1,1),
  b(2) = 16/15: (1,2,2),
  b(3) = 4/3: (2,2,2),
  b(4) = 81/35: (1,3,3),
  b(5) = 81/32: (2,3,3),
  b(6) = 3/1: (3,3,3),
  b(7) = 81/20: (3,3,4),
  b(8) = 256/63: (1,4,4),
  b(9) = 64/15: (2,4,4),
...
  b(41) = b(42) = 49/3: (5,7,8), (7,7,7).
		

Crossrefs

Formula

Squared radius of circumcircle of triangle with sides a, b, c:
R^2 = (a*b*c)^2 / (16*s*(s - a)*(s - b)*(s - c)) with s = (a + b + c)/2.

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025

A317183 Numbers k such that k = 16*area(T)^2 for a primitive integer triangle, T.

Original entry on oeis.org

3, 15, 35, 63, 99, 128, 135, 143, 195, 231, 255, 275, 320, 323, 351, 384, 399, 455, 483, 495, 575, 576, 663, 675, 735, 768, 783, 819, 855, 896, 899, 935, 975, 1023, 1071, 1155, 1235, 1280, 1295, 1311, 1344, 1443, 1463, 1536, 1539, 1575, 1599, 1683, 1728, 1763
Offset: 1

Views

Author

N. J. A. Sloane, Jul 25 2018

Keywords

Comments

A316842 lists the primitive integer triangles.

Crossrefs

Cf. A316842.
Sorted and uniqued values of A317181.
Subsequence of A317182.

Extensions

Terms a(13) and beyond from Lars Blomberg, Jul 27 2018
Name edited by Peter Munn, Jul 30 2025
Showing 1-9 of 9 results.