cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046179 Indices of hexagonal numbers that are also pentagonal.

Original entry on oeis.org

1, 143, 27693, 5372251, 1042188953, 202179284583, 39221739020101, 7608815190614963, 1476070925240282673, 286350150681424223551, 55550453161271059086173, 10776501563135904038493963, 2090585752795204112408742601, 405562859540706461903257570583
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2+sqrt(3))^4 = 97 + 56*sqrt(3). - Ant King, Dec 14 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{195, -195, 1}, {1, 143, 27693}, 11] (* Ant King, Dec 14 2011 *)
  • PARI
    Vec(-x*(3*x^2-52*x+1)/((x-1)*(x^2-194*x+1)) + O(x^20)) \\ Colin Barker, Jun 21 2015

Formula

From Warut Roonguthai, Jan 08 2001: (Start)
a(n) = 194*a(n-1) - a(n-2) - 48.
G.f.: x*(1-52*x+3*x^2)/((1-x)*(1-194*x+x^2)). (End)
From Ant King, Dec 14 2011: (Start)
a(n) = 195*a(n-1) - 195*a(n-2) + a(n-3).
a(n) = (1/24)*sqrt(3)*((sqrt(3)-1)*(2+sqrt(3))^(4n-2)+(sqrt(3)+1)* (2-sqrt(3))^(4n-2)+2*sqrt(3)).
a(n) = ceiling((1/24)*sqrt(3)*(sqrt(3)-1)*(2+sqrt(3))^(4n-2)).
(End)
a(n) = A276915(2n-1). - Daniel Poveda Parrilla, Dec 03 2016