A046233 Numbers whose cube is palindromic in base 5.
0, 1, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
Offset: 1
Links
- Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
Programs
-
PARI
isok(k) = my(d=digits(k^3, 5)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
-
Python
from itertools import count, islice from sympy.ntheory import is_palindromic as ispal def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 5)) print(list(islice(agen(), 10))) # Michael S. Branicky, Aug 02 2022
Extensions
More terms from Megan Francis (mkf5011(AT)psu.edu), Nov 15 2005
Comments