cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046307 Numbers that are divisible by at least 7 primes (counted with multiplicity).

Original entry on oeis.org

128, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972, 1008, 1024, 1056, 1080, 1088, 1120, 1152, 1200, 1216, 1248, 1280, 1296, 1344, 1408, 1440, 1458, 1472, 1512, 1536, 1568, 1584, 1600, 1620
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A046308.

Programs

  • Mathematica
    Select[Range[2000],PrimeOmega[#]>6&] (* Harvey P. Dale, Nov 16 2012 *)
  • PARI
    is(n)=bigomega(n)>6 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A046307(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,7)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i >= 7.