cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A046332 Palindromes with exactly 6 prime factors (counted with multiplicity).

Original entry on oeis.org

2772, 2992, 6776, 8008, 21112, 21712, 21912, 23632, 23832, 25452, 25752, 25952, 27472, 28782, 29392, 40104, 40304, 40404, 42024, 42924, 44044, 44144, 44744, 44944, 45954, 46764, 46864, 48984, 53235, 54945, 55755, 59895, 60606, 61216
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A002113 (palindromes), A046306 (bigomega = 6), A046319.
Cf. A046396 (similar but terms must be squarefree), A373466 (similar, but only distinct prime divisors are counted).

Programs

  • Maple
    N:= 6: # to get all terms of up to N digits
    digrev:= proc(n) local L,Ln; L:= convert(n,base,10);Ln:= nops(L);
    add(L[i]*10^(Ln-i),i=1..Ln);
    end proc:
    Res:= NULL:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, select(numtheory:-bigomega=6,
               [seq](n*10^m + digrev(n), n=10^(m-1)..10^m-1));
      else
        m:= (d-1)/2;
        Res:= Res, select(numtheory:-bigomega=6,
               [seq](seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1));
      fi
    od:
    map(op,[Res]); # Robert Israel, Dec 23 2014
  • PARI
    A046332_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), bigomega(start)==num_fact && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024
  • Python
    from sympy import factorint
    def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[-2::-1])
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[::-1])
    A046332_list = [x for x in palQgen10(4) if sum(list(factorint(x).values())) == 6]
    # Chai Wah Wu, Dec 21 2014
    

Formula

Intersection of A002113 and A046306. - M. F. Hasler, Jun 06 2024
Showing 1-1 of 1 results.