cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046396 Palindromes which are the product of 6 distinct primes.

Original entry on oeis.org

222222, 282282, 474474, 555555, 606606, 646646, 969969, 2040402, 2065602, 2206022, 2417142, 2646462, 2673762, 2875782, 3262623, 3309033, 4179714, 4192914, 4356534, 4585854, 4912194, 5021205, 5169615, 5174715, 5578755
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The original definition "Palindromes with exactly 6 distinct prime factors" was misleading. For example, the number 414414 = 2 * 3^2 * 7 * 11 * 13 * 23 has exactly 6 distinct prime factors, although the factor 3 occurs twice. But the listed terms show that it is not in this sequence. See sequence A373466 for the variant corresponding to that definition. - M. F. Hasler, Jun 06 2024

Crossrefs

Cf. A046332 (similar, but for 6 prime factors counted with multiplicity).
Cf. A002113 (palindromes), A067885 (products of 6 distinct primes).
Cf. A074969 (numbers having 6 distinct prime divisors).

Programs

  • Mathematica
    Select[Range[6*10^6],#==IntegerReverse[#]&&PrimeNu[#]==PrimeOmega[#]==6&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Mar 17 2016 *)
  • PARI
    A046332_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024

Formula

Intersection of A002113 and A067885. - M. F. Hasler, Jun 06 2024

Extensions

Name edited

A373466 Palindromes with exactly 6 distinct prime divisors.

Original entry on oeis.org

222222, 282282, 414414, 444444, 474474, 555555, 606606, 636636, 646646, 666666, 696696, 828828, 888888, 969969, 2040402, 2065602, 2141412, 2206022, 2343432, 2417142, 2444442, 2572752, 2646462, 2673762, 2747472, 2848482, 2875782, 2949492, 2976792
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Comments

The term "exactly" clarifies that we don't mean "at least". But the prime divisors may occur to higher powers in the factorization, cf. Examples.
This is different from A046396 which excludes nonsquarefree terms, i.e., terms where one or more of the distinct prime factors occur to a power greater than 1, as it is possible here, cf. Examples.

Examples

			a(1) = 222222 = 2 * 3 * 7 * 11 * 13 * 37 has exactly 6 distinct prime divisors.
a(3) = 414414 = 2 * 3^2 * 7 * 11 * 13 * 23 has 6 distinct prime divisors, even though the factor 3 occurs twice in the factorization.
		

Crossrefs

Cf. A002113 (palindromes), A074969 (omega(.) = 6).
Cf. A046332 (same with bigomega = 6: prime factors counted with multiplicity), A046396 (similar, but squarefree terms only), A373465 (same with omega = 5), A373467 (same with bigomega = 7).

Programs

  • Mathematica
    Select[Range[3000000],PalindromeQ[#]&&Length[FactorInteger[#]]==6&] (* James C. McMahon, Jun 08 2024 *)
  • PARI
    A373466_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A074969.

A046380 Palindromes with exactly 6 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

2772, 6776, 25452, 59895, 88788, 549945, 1931391, 8117118, 8447448, 51033015, 52711725, 58344385, 103838301, 535707535, 620434026, 1663223661, 8262112628, 15271417251, 25227972252, 27747974772, 27974547972, 92628082629, 97079897079, 6421339331246, 8401825281048
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A046332.

Programs

  • Python
    from sympy import factorint
    def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[-2::-1])
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[::-1])
    A046380_list = []
    for x in palQgen10(6):
        a = factorint(x)
        if sum(list(a.values())) == 6:
            for p in a:
                s = str(p)
                if s != s[::-1]:
                    break
            else:
                A046380_list.append(x) # Chai Wah Wu, Dec 26 2014

Extensions

a(19)-a(25) from Chai Wah Wu, Dec 26 2014

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-4 of 4 results.