cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046332 Palindromes with exactly 6 prime factors (counted with multiplicity).

Original entry on oeis.org

2772, 2992, 6776, 8008, 21112, 21712, 21912, 23632, 23832, 25452, 25752, 25952, 27472, 28782, 29392, 40104, 40304, 40404, 42024, 42924, 44044, 44144, 44744, 44944, 45954, 46764, 46864, 48984, 53235, 54945, 55755, 59895, 60606, 61216
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A002113 (palindromes), A046306 (bigomega = 6), A046319.
Cf. A046396 (similar but terms must be squarefree), A373466 (similar, but only distinct prime divisors are counted).

Programs

  • Maple
    N:= 6: # to get all terms of up to N digits
    digrev:= proc(n) local L,Ln; L:= convert(n,base,10);Ln:= nops(L);
    add(L[i]*10^(Ln-i),i=1..Ln);
    end proc:
    Res:= NULL:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, select(numtheory:-bigomega=6,
               [seq](n*10^m + digrev(n), n=10^(m-1)..10^m-1));
      else
        m:= (d-1)/2;
        Res:= Res, select(numtheory:-bigomega=6,
               [seq](seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1));
      fi
    od:
    map(op,[Res]); # Robert Israel, Dec 23 2014
  • PARI
    A046332_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), bigomega(start)==num_fact && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024
  • Python
    from sympy import factorint
    def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[-2::-1])
                for y in range(10**(x-1),10**x):
                    s = str(y)
                    yield int(s+s[::-1])
    A046332_list = [x for x in palQgen10(4) if sum(list(factorint(x).values())) == 6]
    # Chai Wah Wu, Dec 21 2014
    

Formula

Intersection of A002113 and A046306. - M. F. Hasler, Jun 06 2024

A046396 Palindromes which are the product of 6 distinct primes.

Original entry on oeis.org

222222, 282282, 474474, 555555, 606606, 646646, 969969, 2040402, 2065602, 2206022, 2417142, 2646462, 2673762, 2875782, 3262623, 3309033, 4179714, 4192914, 4356534, 4585854, 4912194, 5021205, 5169615, 5174715, 5578755
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The original definition "Palindromes with exactly 6 distinct prime factors" was misleading. For example, the number 414414 = 2 * 3^2 * 7 * 11 * 13 * 23 has exactly 6 distinct prime factors, although the factor 3 occurs twice. But the listed terms show that it is not in this sequence. See sequence A373466 for the variant corresponding to that definition. - M. F. Hasler, Jun 06 2024

Crossrefs

Cf. A046332 (similar, but for 6 prime factors counted with multiplicity).
Cf. A002113 (palindromes), A067885 (products of 6 distinct primes).
Cf. A074969 (numbers having 6 distinct prime divisors).

Programs

  • Mathematica
    Select[Range[6*10^6],#==IntegerReverse[#]&&PrimeNu[#]==PrimeOmega[#]==6&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Mar 17 2016 *)
  • PARI
    A046332_upto(N, start=1, num_fact=6)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024

Formula

Intersection of A002113 and A067885. - M. F. Hasler, Jun 06 2024

Extensions

Name edited

A373465 Palindromes with exactly 5 distinct prime divisors.

Original entry on oeis.org

6006, 8778, 20202, 28182, 40404, 41514, 43134, 50505, 60606, 63336, 66066, 68586, 80808, 83538, 86268, 87978, 111111, 141141, 168861, 171171, 202202, 204402, 209902, 210012, 212212, 219912, 225522, 231132, 232232, 239932, 246642, 249942, 252252, 258852, 262262, 266662, 272272
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Examples

			a(1) = 6006 = 2 * 3 * 7 * 11 * 13 is a palindrome (A002113) with 5 prime divisors.
a(5) = 40404 = 2^2 * 3 * 7 * 13 * 37 also is a palindrome with 5 prime divisors, although the divisor 2 occurs twice as a factor in the factorization.
		

Crossrefs

Cf. A002113 (palindromes), A051270 (omega(.) = 5).
Cf. A046331 (same but counting prime factors with multiplicity), A046395 (same but squarefree), A373466 (same with omega = 6), A373467 (with omega = 7).

Programs

  • Mathematica
    Select[Range[300000],PalindromeQ[#]&&Length[FactorInteger[#]]==5&] (* James C. McMahon, Jun 08 2024 *)
    Select[Range[300000],PalindromeQ[#]&&PrimeNu[#]==5&] (* Harvey P. Dale, Sep 01 2024 *)
  • PARI
    A373465_upto(N, start=1, num_fact=5)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A051270.
Showing 1-3 of 3 results.