A046328 Palindromes with exactly 2 prime factors (counted with multiplicity).
4, 6, 9, 22, 33, 55, 77, 111, 121, 141, 161, 202, 262, 303, 323, 393, 454, 505, 515, 535, 545, 565, 626, 707, 717, 737, 767, 818, 838, 878, 898, 939, 949, 959, 979, 989, 1111, 1441, 1661, 1991, 3113, 3223, 3443, 3883, 7117, 7447, 7997, 9119, 9229, 9449, 10001
Offset: 1
Examples
111 is a palindrome and 111 = 3*37. 3 and 37 are primes.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 2000 terms from Zak Seidov, terms a(2001)-a(2816) from Michael De Vlieger)
Programs
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits[n]}, Plus @@ Last /@ FactorInteger[n] == 2 && id == Reverse[id]]; Select[ Range[ 10000], fQ[ # ] &] (* Robert G. Wilson v, Jun 06 2005 *) Select[Range[10002], Reverse[x = IntegerDigits[#]] == x && PrimeOmega[#] == 2 &] (* Jayanta Basu, Jun 23 2013 *) Select[Range[11000],PalindromeQ[#]&&PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 30 2018 *)
-
PARI
ispal(n) = my(d=digits(n));d == Vecrev(d) \\ A002113 for(k=1,1e4,if(ispal(k)&&bigomega(k)==2, print1(k, ", "))) \\ Alexandru Petrescu, Jul 07 2022
-
Python
from sympy import factorint from itertools import product def ispal(n): s = str(n); return s == s[::-1] def pals(d, base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def ok(pal): return sum(factorint(pal).values()) == 2 print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # Michael S. Branicky, Aug 14 2022