A046348 Composite palindromes divisible by the sum of their prime factors (counted with multiplicity).
4, 646, 2772, 5445, 8778, 30303, 48384, 50505, 54145, 63336, 77077, 117711, 219912, 234432, 239932, 255552, 272272, 294492, 535535, 585585, 636636, 717717, 825528, 888888, 951159, 999999, 1103011, 1112111, 1345431, 2248422, 2267622
Offset: 1
Examples
a(2)=646 : 2*17*19 -> 2 + 17 + 19 = 38 and 646 / 38 = 17.
Links
- David A. Corneth, Table of n, a(n) for n = 1..4180 (Terms <= 10^15. First 1000 terms from R. J. Mathar and Giovanni Resta)
- David A. Corneth, PARI prog
Programs
-
Mathematica
t={}; Do[If[!PrimeQ[n]&&Reverse[x=IntegerDigits[n]]==x&&IntegerQ[n/Total[Times@@@FactorInteger[n]]],AppendTo[t,n]],{n,4,2.5*10^6}]; t (* Jayanta Basu, Jun 04 2013 *) cpdQ[n_]:=CompositeQ[n]&&PalindromeQ[n]&&Divisible[n,Total[ Flatten[ Table[ #[[1]],#[[2]]]&/@FactorInteger[n]]]]; Select[Range[23*10^5],cpdQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 01 2018 *)
-
PARI
See PARI link.