A046354 Composite palindromes whose sum of prime factors is palindromic (counted with multiplicity).
4, 6, 8, 9, 121, 292, 444, 575, 717, 828, 989, 1331, 2002, 4884, 5445, 8668, 9559, 10201, 11211, 11811, 13231, 14241, 14541, 14641, 15251, 15751, 16261, 16761, 18281, 19291, 19591, 20002, 21112, 21312, 22022, 22922, 23832, 26062, 26162
Offset: 1
Examples
15751 = 19 * 829 -> 19 + 829 = 848 and 848 is a palindrome.
Links
- R. J. Mathar and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 681 terms from R. J. Mathar)
Programs
-
Maple
n := 1 ; for i from 3 to 30000 do pal := A002113(i) ; if not isprime(pal) then sof := A001414(pal) ; if isA002113(sof) then printf("%d %d\n",n,pal) ; n := n+1 ; end if; end if; end do: # R. J. Mathar, Sep 09 2015
-
Mathematica
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[4,26170],!PrimeQ[#]&&And@@palQ/@{#,Total[Times@@@FactorInteger[#]]}&](* Jayanta Basu, Jun 05 2013 *)