cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046352 Composite numbers whose sum of prime factors is palindromic (counted with multiplicity).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 40, 45, 48, 54, 57, 62, 85, 102, 106, 116, 121, 123, 182, 194, 218, 259, 260, 278, 292, 298, 305, 308, 312, 351, 358, 366, 370, 388, 403, 413, 415, 428, 440, 444, 483, 495, 498, 508, 528, 548, 568, 575, 590
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			116 = 2 * 2 * 29 -> 2 + 2 + 29 = 33 and 33 is a palindrome.
		

Crossrefs

Programs

  • Maple
    n := 1 ;
    for i from 2 to 30000 do
        if not isprime(i) then
            sof := A001414(i) ;
            if isA002113(sof) then
                printf("%d %d\n",n,i) ;
                n := n+1 ;
            end if;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[4,590],!PrimeQ[#]&&palQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 05 2013 *)
    Select[Range@1000,CompositeQ@#&&PalindromeQ[Dot@@Transpose[FactorInteger@#]]&]  (* Hans Rudolf Widmer, Dec 21 2022 *)

A046353 Odd composite numbers whose sum of prime factors is palindromic (counted with multiplicity).

Original entry on oeis.org

9, 15, 27, 45, 57, 85, 121, 123, 259, 305, 351, 403, 413, 415, 483, 495, 575, 597, 627, 639, 663, 687, 689, 705, 717, 735, 807, 875, 893, 931, 935, 985, 989, 1073, 1135, 1183, 1203, 1207, 1263, 1285, 1293, 1331, 1353, 1383, 1385, 1407, 1473, 1505, 1545
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			689 = 13 * 53 -> 13 + 53 = 66 and 66 is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[9,1545,2],!PrimeQ[#]&&palQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 05 2013 *)
  • Python
    from sympy import factorint
    def is_046353(n):
        if n % 2 == 0: return False
        f = factorint(n)
        if sum([f[i] for i in f]) < 2: return False
        sfa = sum([i*f[i] for i in f])
        if sfa == int(str(sfa)[::-1]): return True
        return False # John Cerkan, Apr 24 2018

Extensions

Name clarified and offset changed by John Cerkan, Apr 24 2018
Showing 1-2 of 2 results.