A046353 Odd composite numbers whose sum of prime factors is palindromic (counted with multiplicity).
9, 15, 27, 45, 57, 85, 121, 123, 259, 305, 351, 403, 413, 415, 483, 495, 575, 597, 627, 639, 663, 687, 689, 705, 717, 735, 807, 875, 893, 931, 935, 985, 989, 1073, 1135, 1183, 1203, 1207, 1263, 1285, 1293, 1331, 1353, 1383, 1385, 1407, 1473, 1505, 1545
Offset: 1
Examples
689 = 13 * 53 -> 13 + 53 = 66 and 66 is a palindrome.
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[9,1545,2],!PrimeQ[#]&&palQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 05 2013 *)
-
Python
from sympy import factorint def is_046353(n): if n % 2 == 0: return False f = factorint(n) if sum([f[i] for i in f]) < 2: return False sfa = sum([i*f[i] for i in f]) if sfa == int(str(sfa)[::-1]): return True return False # John Cerkan, Apr 24 2018
Extensions
Name clarified and offset changed by John Cerkan, Apr 24 2018
Comments