cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046353 Odd composite numbers whose sum of prime factors is palindromic (counted with multiplicity).

Original entry on oeis.org

9, 15, 27, 45, 57, 85, 121, 123, 259, 305, 351, 403, 413, 415, 483, 495, 575, 597, 627, 639, 663, 687, 689, 705, 717, 735, 807, 875, 893, 931, 935, 985, 989, 1073, 1135, 1183, 1203, 1207, 1263, 1285, 1293, 1331, 1353, 1383, 1385, 1407, 1473, 1505, 1545
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			689 = 13 * 53 -> 13 + 53 = 66 and 66 is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[9,1545,2],!PrimeQ[#]&&palQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 05 2013 *)
  • Python
    from sympy import factorint
    def is_046353(n):
        if n % 2 == 0: return False
        f = factorint(n)
        if sum([f[i] for i in f]) < 2: return False
        sfa = sum([i*f[i] for i in f])
        if sfa == int(str(sfa)[::-1]): return True
        return False # John Cerkan, Apr 24 2018

Extensions

Name clarified and offset changed by John Cerkan, Apr 24 2018

A046354 Composite palindromes whose sum of prime factors is palindromic (counted with multiplicity).

Original entry on oeis.org

4, 6, 8, 9, 121, 292, 444, 575, 717, 828, 989, 1331, 2002, 4884, 5445, 8668, 9559, 10201, 11211, 11811, 13231, 14241, 14541, 14641, 15251, 15751, 16261, 16761, 18281, 19291, 19591, 20002, 21112, 21312, 22022, 22922, 23832, 26062, 26162
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			15751 = 19 * 829 -> 19 + 829 = 848 and 848 is a palindrome.
		

Crossrefs

Programs

  • Maple
    n := 1 ;
    for i from 3 to 30000 do
        pal := A002113(i) ;
        if not isprime(pal) then
            sof := A001414(pal) ;
            if isA002113(sof) then
                printf("%d %d\n",n,pal) ;
                n := n+1 ;
            end if;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[4,26170],!PrimeQ[#]&&And@@palQ/@{#,Total[Times@@@FactorInteger[#]]}&](* Jayanta Basu, Jun 05 2013 *)

Formula

A046352 INTERSECT A002113. - R. J. Mathar, Sep 09 2015

A327749 Natural numbers whose sum of prime factors (with repetition) is palindromic in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 24, 27, 28, 40, 45, 48, 54, 57, 62, 85, 101, 102, 106, 116, 121, 123, 131, 151, 181, 182, 191, 194, 218, 259, 260, 278, 292, 298, 305, 308, 312, 313, 351, 353, 358, 366, 370, 373, 383, 388, 403, 413, 415, 428, 440, 444, 483, 495, 498
Offset: 1

Views

Author

Robert Bilinski, Sep 23 2019

Keywords

Comments

Union of 1, A046352 and the palindromic primes (A002385). - Corrected by Robert Israel, Nov 20 2020

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.

Crossrefs

Programs

  • Magma
    [1] cat [k: k in [2..500]| Intseq(a) eq Reverse(Intseq(a)) where a is &+[m[1]*m[2]: m in Factorization(k)]]; // Marius A. Burtea, Sep 27 2019
  • Maple
    ispali:= proc(n) option remember; local L; L:= convert(n,base,10); evalb(L = ListTools:-Reverse(L)) end proc:
    spf:= proc(n) add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    select(t -> ispali(spf(t)), [$0..1000]); # Robert Israel, Nov 20 2020
  • Mathematica
    sopfr[1] = 0; sopfr[n_] := Plus @@ (Times @@@ FactorInteger[n]); aQ[n_] := PalindromeQ[sopfr[n]]; Select[Range[500], aQ] (* Amiram Eldar, Sep 23 2019 *)
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    isok(n) = my(d=digits(sopfr(n))); d == Vecrev(d); \\ Michel Marcus, Sep 27 2019
    
Showing 1-3 of 3 results.