A046365 Composite palindromes whose sum of prime factors is prime (counted with multiplicity).
6, 22, 88, 99, 202, 252, 333, 414, 424, 454, 464, 595, 686, 747, 777, 808, 838, 848, 858, 909, 1001, 1551, 1771, 2442, 3553, 4114, 5335, 5775, 6336, 6996, 8008, 8228, 9009, 9559, 9669, 9889, 12121, 14241, 16261, 16761, 17171, 18081, 18381, 20102, 20602, 21012
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[20125], !PrimeQ[#] && Reverse[x=IntegerDigits[#]] == x && PrimeQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, May 29 2013 *)
-
Python
from itertools import product from sympy import factorint, isprime def pals(d, base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def ok(pal): f = factorint(pal); return len(f)>1 and isprime(sum(p*f[p] for p in f)) print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021
Formula
Extensions
a(45) and beyond from Michael S. Branicky, Jun 22 2021