A046397 Palindromes which are the product of exactly 7 distinct primes.
22444422, 24266242, 26588562, 35888853, 36399363, 43777734, 47199174, 51066015, 53588535, 53888835, 55233255, 59911995, 60066006, 62588526, 62700726, 62888826, 81699618, 87788778, 89433498, 122434221, 202040202
Offset: 1
Examples
The first two palindromes with 7 distinct prime factors are 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 and 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103, but these are excluded since one of the prime factors occurs to a higher power. a(1) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101, which is squarefree, is therefore the first term of this sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: filter:= proc(n) local F; F:= ifactors(n)[2]; nops(F) = 7 and map(t -> t[2],F)=[1$7] end proc: Res:= NULL: count:= 0: for d from 2 while count < 100 do if d::even then m:= d/2; for n from 10^(m-1) to 10^m-1 while count < 100 do v:= n*10^m+digrev(n); if filter(v) then count:= count+1; Res:= Res, v; fi; od; else m:= (d-1)/2; for n from 10^(m-1) to 10^m-1 while count < 100 do for y from 0 to 9 while count < 100 do v:= n*10^(m+1)+y*10^m+digrev(n); if filter(v) then count:= count+1; Res:= Res, v; fi; od od fi od: Res; # Robert Israel, Jan 20 2020
-
PARI
A046397_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); is_A002113(start)&& start--; while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024
Comments