A046408 Palindromes with exactly 2 distinct palindromic prime factors.
6, 22, 33, 55, 77, 202, 262, 303, 393, 505, 626, 707, 939, 1111, 1441, 1661, 1991, 3443, 3883, 7997, 13231, 15251, 18281, 19291, 20602, 22622, 22822, 24842, 26662, 28682, 30903, 31613, 33933, 35653, 37673, 38683, 39993, 60206, 60406, 60806, 62026, 64646, 64846
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[65000],PalindromeQ[#]&&Total[Boole[PalindromeQ/@ FactorInteger[ #][[All,1]]]]==2&&PrimeOmega[#]==2&] (* Harvey P. Dale, Aug 07 2021 *)
-
PARI
ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113 for(k=1, 1e5, if(ispal(k)&&bigomega(k)==2,a=divisors(k); if(#a==4&&ispal(a[2])&&ispal(a[3]), print1(k,", ")))) \\ Alexandru Petrescu, Aug 14 2022
-
Python
from sympy import factorint from itertools import product def ispal(n): s = str(n); return s == s[::-1] def pals(d, base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def ok(pal): f = factorint(pal) return len(f) == 2 and sum(f.values()) == 2 and all(ispal(p) for p in f) print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021
Extensions
a(41) and beyond from Michael S. Branicky, Jun 22 2021