A046429 Numbers requiring 9 steps to reach a prime under the prime factor concatenation procedure.
40, 44, 81, 224, 265, 395, 422, 462, 640, 698, 818, 972, 1010, 1032, 1070, 1089, 1174, 1206, 1280, 1336, 1446, 1518, 1520, 1528, 1581, 1662, 1728, 1814, 1816, 1849, 1852, 1853, 1856, 1892, 1927, 1932, 1960, 2032, 2060, 2061, 2090, 2098, 2202, 2212, 2249
Offset: 1
Examples
698 is in the sequence as 698 -> 2349 -> 333329 -> 2571297 -> 3857099 -> 31312323 -> 33771937101 -> 379437170413 -> 73124171910091 -> 374148203145623. Only after the ninth iteration we reach a prime. - _David A. Corneth_, Oct 15 2019
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Home Primes
Programs
-
PARI
is(n, k) = if(isprime(n), return(0)); for(i = 1, k - 1, n = concatelements(primesvector(n)); if(isprime(n), return(0))); n = concatelements(primesvector(n)); isprime(n) concatelements(v) = my(s = ""); for(i = 1, #v, s = concat(s, v[i])); eval(s) primesvector(n) = my(f = factor(n), res = vector(vecsum(f[,2])), t = 0); for(i = 1, #f~, for(j = 1, f[i, 2], t++; res[t] = f[i, 1])); res \\ David A. Corneth, Oct 15 2019
Extensions
Extended and edited by Charles R Greathouse IV, Apr 28 2010