cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046429 Numbers requiring 9 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

40, 44, 81, 224, 265, 395, 422, 462, 640, 698, 818, 972, 1010, 1032, 1070, 1089, 1174, 1206, 1280, 1336, 1446, 1518, 1520, 1528, 1581, 1662, 1728, 1814, 1816, 1849, 1852, 1853, 1856, 1892, 1927, 1932, 1960, 2032, 2060, 2061, 2090, 2098, 2202, 2212, 2249
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			698 is in the sequence as 698 -> 2349 -> 333329 -> 2571297 -> 3857099 -> 31312323 -> 33771937101 -> 379437170413 -> 73124171910091 -> 374148203145623. Only after the ninth iteration we reach a prime. - _David A. Corneth_, Oct 15 2019
		

Crossrefs

Programs

  • PARI
    is(n, k) = if(isprime(n), return(0)); for(i = 1, k - 1, n = concatelements(primesvector(n)); if(isprime(n), return(0))); n = concatelements(primesvector(n)); isprime(n)
    concatelements(v) = my(s = ""); for(i = 1, #v, s = concat(s, v[i])); eval(s)
    primesvector(n) = my(f = factor(n), res = vector(vecsum(f[,2])), t = 0); for(i = 1, #f~, for(j = 1, f[i, 2], t++; res[t] = f[i, 1])); res \\ David A. Corneth, Oct 15 2019

Extensions

Extended and edited by Charles R Greathouse IV, Apr 28 2010