cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046471 Number of numbers k>1 such that k equals the sum of digits in k^n.

Original entry on oeis.org

8, 1, 5, 5, 4, 4, 8, 3, 3, 6, 3, 1, 11, 5, 7, 6, 4, 2, 9, 3, 3, 7, 3, 3, 13, 4, 2, 6, 5, 1, 10, 1, 7, 3, 5, 2, 8, 2, 2, 6, 1, 4, 9, 5, 3, 8, 8, 4, 11, 1, 3, 4, 4, 5, 2, 1, 6, 3, 4, 4, 5, 2, 3, 4, 4, 3, 8, 1, 5, 3, 2, 2, 5, 4, 5, 3, 3, 4, 8, 4, 2, 4, 4, 1, 5, 2, 6, 6, 3, 2, 7, 3, 3, 8, 5, 1, 7, 1, 4, 5, 2, 3, 9
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1998

Keywords

Comments

The number of digits in k^n is at most 1+n*log(k). Hence the maximum sum of digits of k^n is 9(1+n*log(k)). By solving k=9(1+n*log(k)), we can compute an upper bound on k for each n. Sequence A133509 lists the n for which a(n)=0.

Examples

			a(17)=4 -> sum-of-digits{x^17}=x for x=80,143,171 and 216 (x>1).
		

References

  • Joe Roberts, "Lure of the Integers", The Mathematical Association of America, 1992, p. 172.

Crossrefs

a(n) = A046019(n) - 1.
Cf. A152147 (table of k such that the sum of digits of k^n equals k)

Extensions

Edited by T. D. Noe, Nov 25 2008