cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046639 Length of A001388(n).

Original entry on oeis.org

1, 2, 2, 4, 6, 7, 10, 12, 18, 25, 31, 41, 56, 73, 96, 128, 171, 226, 302, 399, 533, 704, 937, 1236, 1645, 2170, 2884, 3806, 5059, 6680, 8875, 11725, 15575, 20584, 27332, 36132, 47963, 63420, 84160, 111306, 147673, 195345, 259118, 342831, 454680
Offset: 1

Views

Author

Keywords

Comments

The average multiplicative growth from the n-th term to the (n+1)st term is the largest root of x^3 - x - 1, which is approximately 1.324718. - Nathaniel Johnston, Jan 13 2011

Crossrefs

Programs

  • Mathematica
    p={-1,3,4,1,-2,-4,-4,1,5,1,0,0,-1,0,-1,0,2,1};
    q={1,1,0,-2,-2,0,2,2,0,-1,-2,0,1};
    gf=Fold[x #1+#2&,0,p]/Fold[x #1+#2&,0,q];
    CoefficientList[Series[gf,{x,0,100}],x] (* Peter J. C. Moses, Jun 21 2013 *)
    LinearRecurrence[{0,2,1,0,-2,-2,0,2,2,0,-1,-1},{1,2,2,4,6,7,10,12,18,25,31,41,56,73,96,128,171,226},50] (* Harvey P. Dale, Mar 08 2022 *)
  • PARI
    Vec(x*(1 + 2*x - x^3 - x^5 + x^8 + 5*x^9 + x^10 - 4*x^11 - 4*x^12 - 2*x^13 + x^14 + 4*x^15 + 3*x^16 - x^17) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x^2 - x^3)*(1 - x^2 + x^5)) + O(x^50)) \\ Colin Barker, Jul 01 2020

Formula

From Colin Barker, Jul 01 2020: (Start)
G.f.: x*(1 + 2*x - x^3 - x^5 + x^8 + 5*x^9 + x^10 - 4*x^11 - 4*x^12 - 2*x^13 + x^14 + 4*x^15 + 3*x^16 - x^17) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x^2 - x^3)*(1 - x^2 + x^5)).
a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5) - 2*a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) for n>18.
(End)