A046643 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.
1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 35, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 63, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 35, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 231, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 35, 35, 1, 1, 3, 1, 1, 1, 5, 1, 3
Offset: 1
Examples
b_1, b_2, ... = 1, 1/2, 1/2, 3/8, 1/2, 1/4, 1/2, 5/16, 3/8, 1/4, 1/2, 3/16, ...
Links
Crossrefs
Programs
-
Maple
b := proc(n) option remember; local c,i,t1; if n = 1 then 1 else c := 1; t1 := divisors(n); for i from 2 to nops(t1)-1 do c := c-b(t1[ i ])*b(n/t1[ i ]); od; c/2; fi; end;
-
Mathematica
b[1] = 1; b[n_] := b[n] = (dn = Divisors[n]; c = 1; Do[c = c - b[dn[[i]]]*b[n/dn[[i]]], {i, 2, Length[dn] - 1}]; c/2); a[n_] := Numerator[b[n]]; a /@ Range[90] (* Jean-François Alcover, Apr 04 2011, after Maple version *)
-
PARI
A046643perA046644(n) = { my(c=1); if(1==n,c,fordiv(n,d, if((d>1)&&(d
A046643perA046644(d)*A046643perA046644(n/d)))); (c/2)); } A046643(n) = numerator(A046643perA046644(n)); \\ After Maple-program, Antti Karttunen, Jul 08 2017 -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025
-
Scheme
(define (A046643 n) (if (= 1 n) n (* (A001790 (A067029 n)) (A046643 (A028234 n))))) ;; Or, after Christian G. Bower's May 16 2005 comment: (definec (A046643perA046644 n) (if (= 1 n) n (* (/ (A010050 (A067029 n)) (A000290 (A000165 (A067029 n)))) (A046643perA046644 (A028234 n))))) (define (A046643 n) (numerator (A046643perA046644 n))) (define (A046644 n) (denominator (A046643perA046644 n))) ;; Antti Karttunen, Jul 08 2017
Formula
From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = A001790(n).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025
Comments