cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046655 Numbers whose sum of the squares of divisors is also a square number.

Original entry on oeis.org

1, 42, 246, 287, 728, 1434, 1673, 1880, 4264, 6237, 9799, 9855, 18330, 21352, 21385, 24856, 36531, 39990, 46655, 57270, 66815, 92664, 125255, 156570, 182665, 208182, 212949, 242879, 273265, 380511, 391345, 411558, 539560, 627215, 693160, 730145, 741096
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 246 = 2*3*41 with 8 divisors: 1, 2, 3, 6, 41, 82, 123, 246. The sum of squares of the divisors is 84100 = 290^2, also a square.
		

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 42, p. 16, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    Select[Range[750000], IntegerQ[Sqrt[DivisorSigma[2, #]]] &] (* Jayanta Basu, Jun 27 2013 *)
  • PARI
    for( n=1,10^6, issquare(sigma(n,2)) && print1(n", ")) \\ M. F. Hasler, Oct 05 2008

A064028 Sum of the unitary divisors of n!.

Original entry on oeis.org

1, 3, 12, 36, 216, 1020, 8160, 61920, 507744, 4383392, 52600704, 624249600, 8739494400, 109190390400, 1583122968000, 25318378008000, 455730804144000, 8193040840252800, 163860816805056000, 3256371347261760000, 67204676251838361600, 1366492477414792734720
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			n=6, 6! = 720, sum of the 8 unitary ones of its 30 divisors is 1020, a(6) = 720+1+16+45+9+80+5+144 = 1020.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma/@ (Range[17]!) (* Amiram Eldar, Jun 23 2019 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(s=1); forprime(p=2,n, s*=p^valp(n,p)+1); s \\ Charles R Greathouse IV, Jan 26 2023

Formula

a(n) = usigma(n!) = A034448(A000142(n)).
a(n)/n! <= 2 (while usigma(n)/n and sigma(n!)/n! are unbounded; Wall, 1984). - Amiram Eldar, Feb 08 2022

A064138 Sum of non-unitary divisors of n!.

Original entry on oeis.org

0, 0, 0, 24, 144, 1398, 11184, 97200, 973296, 10950696, 131408352, 1593191808, 22304685312, 333297226080, 5103130001760, 81686161277280, 1470350902991040, 26490792085668288, 529815841713365760, 10635027891469974720
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			For n = 6, 6! = 720, the sum of its 30 divisors is 2418, the sum of the 8 unitary divisors is 1020, so the remaining 22 divisors give a(6) = 1398.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; a[1] = 0; Array[a, 20] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; f=1; for (n=1, 100, f*=n; write("b064138.txt", n, " ", sigma(f) - usigma(f)); ) } \\ Harry J. Smith, Sep 08 2009

Formula

a(n) = sigma(n!) - usigma(n!) = A000203(n!) - A034448(A000142(n)) = A062569(n) - A034448(n!) = A048105(n!).

Extensions

Term corrected and more terms added by Harry J. Smith, Sep 08 2009
Showing 1-3 of 3 results.