cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046656 Square roots of sums of squares of divisors in A046655.

Original entry on oeis.org

1, 50, 290, 290, 850, 1690, 1690, 2210, 4930, 6710, 9802, 10660, 22100, 24650, 22100, 28730, 38918, 48100, 48100, 68900, 68900, 114070, 128180, 188500, 188500, 246500, 226798, 246500, 278980, 404260, 399620, 490100, 640900, 640900, 817700, 746980, 906100
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Sqrt[DivisorSigma[2, #]] & /@ Range[750000], IntegerQ] (* Jayanta Basu, Jun 27 2013 *)

Formula

a(n) = sqrt(A001157(A046655(n))). - Amiram Eldar, Aug 12 2023

A232554 Square numbers whose sum of square divisors is also square.

Original entry on oeis.org

1, 1764, 60516, 82369, 529984, 2056356, 2798929, 3534400, 18181696, 38900169, 96020401, 97121025, 335988900, 455907904, 457318225, 617820736, 1334513961, 1599200100, 2176689025, 3279852900, 4464244225, 8586616896, 15688815025, 24514164900, 33366502225
Offset: 1

Views

Author

Antonio Roldán, Nov 26 2013

Keywords

Examples

			60516 = 246^2. Sum of square divisors: 60516 + 15129 + 6724 + 1681 + 36 + 9 + 4 + 1 = 84100 = 290^2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); A035316[1] = 1; A035316[n_] := Times @@ f @@@ FactorInteger[n];
    Select[Range[200000]^2, IntegerQ[Sqrt[A035316[#]]]&] (* Amiram Eldar, Aug 12 2023 *)
    ssdQ[n_]:=IntegerQ[Sqrt[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]]]]; Select[Range[200000]^2,ssdQ] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    {for(n=1,10^5,m=n*n;k=sumdiv(m,d,d*issquare(d));if(issquare(k),print(m)))}

Formula

a(n) = A046655(n)^2.

A290846 Numbers k such that sum of squares of divisors of k is a cube.

Original entry on oeis.org

1, 4182, 4879, 122664360, 315870765, 4621320120, 5006430130, 20245909880, 220899101736, 239307360214, 812593845485
Offset: 1

Views

Author

Altug Alkan, Aug 12 2017

Keywords

Comments

It is known that A006532 is an infinite sequence. Is this sequence infinite?
a(12) > 10^12. - Giovanni Resta, Aug 14 2017

Examples

			4879 is a term because 1^2 + 7^2 + 17^2 + 41^2 + 119^2 + 287^2 + 697^2 + 4879^2 = 290^3.
		

Crossrefs

Programs

  • PARI
    isok(n) = ispower(sigma(n, 2), 3);

Extensions

a(6)-a(11) from Giovanni Resta, Aug 14 2017

A063831 Sum of cubes of divisors is a square.

Original entry on oeis.org

1, 2, 345, 690, 47196, 46248900, 53262468, 71315748, 140553735, 188194335, 215515727, 281107470, 288564647, 292978595, 310129096, 376388670, 431031454, 577129294, 585957190, 1474108335, 2133051720, 2489605188, 2948216670, 3270679304, 4043104611, 5142743032
Offset: 1

Views

Author

Jason Earls, Aug 21 2001

Keywords

Examples

			345 is in the sequence since sigma_3(345) = 6552^2 is a square.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], IntegerQ[ Sqrt[ DivisorSigma[3,#] ] ] &] (* Amiram Eldar, Dec 06 2018 *)
  • PARI
    for(n=1,10^5, if(issquare(sigma(n,3)),print1(n, ", ")))

Extensions

More terms from Thomas Baruchel, Oct 20 2003
More terms from Sean A. Irvine, Sep 24 2009
a(24)-a(26) from Amiram Eldar, Dec 06 2018

A318169 Composite numbers k such that sigma_2(k) - 1 is a square, where sigma_2(k) = A001157(k) is the sum of squares of divisors of k.

Original entry on oeis.org

6, 40, 136, 2696, 3352, 46976, 223736, 5509736, 1915798072
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

This property is shared with all the primes since sigma_2(p) = 1 + p^2.
The values of sqrt(sigma_2(a(n))-1) are 7, 47, 157, 3107, 3863, 54243, 257843, 6349657, 2207848187.
Are there terms not of the form 2^k * p where p is prime? - David A. Corneth, Aug 20 2018
2*10^12 < a(10) <= 44463118771144. The terms 21687324345660824, 14524130539077100050485512, 287674439504279743204606472 (and others) of the form 2^k * p can be found by solving the quadratic Diophantine equation sigma_2(2^k) * (p^2 + 1) = x^2 + 1 for appropriate values of k. - Giovanni Resta, Aug 20 2018

Crossrefs

Programs

  • Magma
    [n: n in [2..6*10^6] |not IsPrime(n) and IsSquare(DivisorSigma(2, n)-1)]; // Vincenzo Librandi, Aug 22 2018
  • Mathematica
    sQ[n_] := IntegerQ[Sqrt[n]]; aQ[n_] := CompositeQ[n] && sQ[DivisorSigma[2,n]-1]; Select[Range[10000],aQ]
  • PARI
    forcomposite(n=2, 1e15, if( issquare(sigma(n,2)-1), print1(n, ", ")))
    
Showing 1-5 of 5 results.