A046658 Triangle related to A001700 and A000302 (powers of 4).
1, 3, 1, 10, 7, 1, 35, 38, 11, 1, 126, 187, 82, 15, 1, 462, 874, 515, 142, 19, 1, 1716, 3958, 2934, 1083, 218, 23, 1, 6435, 17548, 15694, 7266, 1955, 310, 27, 1, 24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1, 92378, 330818, 397923, 259356, 105102, 27866, 4867, 542, 35, 1
Offset: 1
Examples
Triangle begins as: 1; 3, 1; 10, 7, 1; 35, 38, 11, 1; 126, 187, 82, 15, 1; 462, 874, 515, 142, 19, 1; 1716, 3958, 2934, 1083, 218, 23, 1; 6435, 17548, 15694, 7266, 1955, 310, 27, 1; 24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A046658:= func< n,k | Binomial(n,k)*(Binomial(n+1,2)*Catalan(n )/Catalan(k-1) -4^(n-k+1)*Binomial(k,2))/(n*(n-k+1)) >; [A046658(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 28 2024
-
Mathematica
T[n_, k_]:= (1/2)*Binomial[n,k-1]*(Binomial[2*n,n]/Binomial[2*(k-1), k -1] - 4^(n-k+1)*(k-1)/n); Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
-
SageMath
def A046658(n,k): return (1/2)*binomial(n,k-1)*(binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n) flatten([[A046658(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 28 2024
Formula
T(n, k) = (1/2)*binomial(n, k-1)*( binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n ), n >= k >= 1.
G.f. for column k: x*c(x)*((x/(1-4*x))^(k-1))/sqrt(1-4*x), where c(x) is the g.f. for Catalan numbers (A000108).