cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046703 Multiplicative primes: product of digits is a prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 31, 71, 113, 131, 151, 211, 311, 1117, 1151, 1171, 1511, 2111, 11113, 11117, 11131, 11171, 11311, 111121, 111211, 112111, 113111, 131111, 311111, 511111, 1111151, 1111211, 1111711, 1117111, 1171111, 11111117, 11111131, 11111171, 11111311, 11113111, 11131111
Offset: 1

Views

Author

Keywords

Comments

Primes with one prime digit and all other digits are 1. The linked table includes probable primes. - Jens Kruse Andersen, Jul 21 2014

Crossrefs

Cf. A117835 ("noncomposite" variant), A007954 (product of digits), A028842 (product of digits is prime).

Programs

  • Mathematica
    Select[Prime[Range[740000]],PrimeQ[Times@@IntegerDigits[#]]&] (* Harvey P. Dale, Oct 02 2011 *)
    Select[FromDigits/@Flatten[Table[Permutations[PadRight[{p},n,1]],{n,8},{p,{2,3,5,7}}],2],PrimeQ]//Union (* Harvey P. Dale, Nov 21 2019 *)
  • PARI
    f(n,b,d) = if(d, f(10*n+1, b, d-1); if(!b, forprime(q=2, 9, f(10*n+q, 1, d-1))), if(b && isprime(n), print1(n", ")))
    for(d=1, 8, f(0,0,d)) \\ f(0,0,d) prints d-digit terms. Jens Kruse Andersen, Jul 21 2014
    
  • PARI
    \\ From M. F. Hasler, Apr 23 2019: (Start)
    select( is_A046703(n)=isprime(vecprod(digits(n)))&&ispseudoprime(n), [0..9999]) \\ This defines is_A046703(). In older PARI versions, vecprod=factorback.
    next_A046703(n)={if( n>1, until( ispseudoprime(n), my(d=digits(n)); n=fromdigits( apply( t->if(t>1, nextprime(t+1), 1), d))+(d[1]>5)); n, 2)}
    A046703_vec(N=99)=vector(N, i, t=next_A046703(if(i>1, t))) \\ (End)

Extensions

Corrected by Harvey P. Dale, Oct 02 2011