cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046714 Convolution of A000108 (Catalan) with A000351 (powers of 5).

Original entry on oeis.org

1, 6, 32, 165, 839, 4237, 21317, 107014, 536500, 2687362, 13453606, 67326816, 336842092, 1684953360, 8427441240, 42146901045, 210769862895, 1053978959265, 5270372435025, 26353629438315, 131774711311995
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 5*Self(n-1) + Catalan(n-1): n in [1..40]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-5*x)), {x,0,40}], x] (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    @CachedFunction
    def A046714(n): return 1 if n==1 else 5*A046714(n-1) + catalan_number(n-1)
    [A046714(n) for n in range(1,41)] # G. C. Greubel, Jul 28 2024

Formula

a(n) = Sum_{k=0..n} A000108(k)*5^(n-k).
a(n) = 5*a(n-1) + C(n), a(0) = 1.
G.f.: c(x)/(1-5*x), where c(x) = g.f. for Catalan numbers A000108.
Homogeneous recursion: a(n) = (3*(3*n+1)/(n+1))*a(n-1) - (10*(2*n-1)/(n+1))*a(n-2), a(-1) := 0, a(0)=1, n >= 1.
Hypergeometric 2F1 form: 2*a(n) = 5^(n+1) - binomial(2*(n+1), n+1) * hypergeom([ -n-1, 1 ], [ 1/2 ], -1/4).
a(n) ~ (5-sqrt(5))/2 * 5^n. - Vaclav Kotesovec, Jul 07 2016