A046716 Coefficients of a special case of Poisson-Charlier polynomials.
1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290, 125853, 606417, 1809905, 3197210, 2995011, 1112083, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 3, 1; 1, 6, 8, 1; 1, 10, 29, 24, 1; 1, 15, 75, 145, 89, 1; 1, 21, 160, 545, 814, 415, 1; 1, 28, 301, 1575, 4179, 5243, 2372, 1; 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
Crossrefs
Programs
-
Magma
A046716:= func< n,k | (&+[(-1)^j*Binomial(n,k-j)*StirlingFirst(j+n-k, n-k): j in [0..k]]) >; [A046716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
-
Maple
a := proc(n,k) option remember; if k = 0 then 1 elif k < 0 then 0 elif k = n then (-1)^n else a(n-1,k) - n*a(n-1,k-1) - (n-1)*a(n-2,k-2) fi end: A046716 := (n,k) -> abs(a(n,k)); seq(seq(A046716(n,k),k=0..n),n=0..9); # Peter Luschny, Apr 05 2011
-
Mathematica
t[, 0] = 1; t[n, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *) T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] +n*T[n-1,k-1] - (n-1)*T[n-2,k-2]]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
-
SageMath
def A046716(n, k): return sum(binomial(n, k-j)*stirling_number1(j+n-k, n-k) for j in range(k+1)) flatten([[A046716(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024
Formula
Enneking and Ahuja reference gives the recurrence t(n, k) = t(n-1, k) - n*t(n-1, k-1) - (n-1)*t(n-2, k-2), with t(n, 0) = 1 and t(n, n) = (-1)^n. This sequence is T(n, k) = (-1)^k * t(n, k).
Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004
Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004
T(n, 0) = 1, T(n, k) = (-1)^k * Sum_{i=n-k..n} (-1)^i*C(n, i)*S1(i, n-k), where S1 = Stirling numbers of first kind (A008275).
From G. C. Greubel, Jul 31 2024: (Start)
T(n, k) = T(n-1, k) + n*T(n-1, k-1) - (n-1)*T(n-2, k-2), with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^(n+1)*A023443(n). (End)
Extensions
More terms from Vladeta Jovovic, Jun 15 2004
Comments