cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046718 Number of permutations of [ n ] with exactly one 132-pattern and two 123-patterns.

Original entry on oeis.org

1, 4, 14, 47, 152, 472, 1408, 4048, 11264, 30464, 80384, 207616, 526336, 1312768, 3227648, 7835648, 18808832, 44695552, 105250816, 245825536, 569901056, 1312292864, 3003121664, 6833569792, 15468593152, 34846277632, 78148272128, 174533378048, 388291887104
Offset: 4

Views

Author

Keywords

Examples

			a(4) = 1: 1324.
a(5) = 4: 24315, 24351, 41325, 51324.
a(6) = 14: 354216, 354261, 354612, 354621, 435162, 462135, 524316, 524361, 541326, 561324, 624315, 624351, 641325, 651324.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-16|32|-24|8>>^(n-4).
            <<1, 4, 14, 47>>)[1, 1]:
    seq(a(n), n=4..30);  # Alois P. Heinz, Oct 01 2012
  • Mathematica
    LinearRecurrence[{8, -24, 32, -16}, {1, 4, 14, 47}, 30] (* Jean-François Alcover, Aug 18 2018 *)
  • Sage
    def LinearRecurrence4(a0,a1,a2,a3,a4,a5,a6,a7):
        x, y, z, u = Integer(a0),Integer(a1),Integer(a2),Integer(a3)
        yield x
        while True:
            x, y, z, u = y, z, u, a7*x+a6*y+a5*z+a4*u
            yield x
    A046718 = LinearRecurrence4(1, 4, 14, 47, 8, -24, 32, -16)
    [next(A046718) for i in range(29)] # Peter Luschny, Oct 02 2012

Formula

G.f.: -x^4*(x^3-6*x^2+4*x-1)/(2*x-1)^4.
a(n) = 2^(n-8)*(n^3-11*n^2+54*n-88). - R. J. Mathar, Oct 02 2012

Extensions

Edited at the suggestion of R. J. Mathar by Alois P. Heinz, Oct 01 2012