A046739 Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.
0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
Offset: 1
Examples
Triangle starts: 0; 1; 1, 1; 1, 7, 1; 1, 21, 21, 1; 1, 51, 161, 51, 1; 1, 113, 813, 813, 113, 1; ... From _Peter Luschny_, Sep 17 2021: (Start) The triangle shows the coefficients of the following bivariate polynomials: [1] 0; [2] x*y; [3] x^2*y + x*y^2; [4] x^3*y + 7*x^2*y^2 + x*y^3; [5] x^4*y + 21*x^3*y^2 + 21*x^2*y^3 + x*y^4; [6] x^5*y + 51*x^4*y^2 + 161*x^3*y^3 + 51*x^2*y^4 + x*y^5; [7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6; ... These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.) (End)
Links
- Robert Israel, Table of n, a(n) for n = 1..10012 (rows 0 to 142, flattened)
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bulletin of the American Mathematical Society 80.5 (1974): 881-884. [Annotated scanned copy]
- L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975
- N. Gustafsson and L. Solus. Derangements, Ehrhart theory, and local h-polynomials, arXiv:1807.05246 [math.CO], 2018.
- R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188. [_Emeric Deutsch_, May 25 2009]
- Lili Mu and Volkmar Welker, On a question about real rooted polynomials and f-polynomials of simplicial complexes, arXiv:2503.24076 [math.CO], 2025. See p. 8.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc., 5 (1992), 805-851.
- John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska, Specht Polytopes and Specht Matroids, arXiv:1701.05277 [math.CO], 2017. [See Conjecture 6.2]
Crossrefs
Programs
-
Maple
G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
-
Mathematica
max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}]; coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *) E1[n_ /; n >= 0, 0] = 1; (* E1(n,k) are the Eulerian numbers *) E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k]; T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}]; Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *) Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]),{t,0,n}]]],{n,0,12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
-
PARI
T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])} { my(A=T(10));for(i=1,#A,print(A[i])) } \\ Andrew Howroyd, Nov 13 2024
Formula
a(n+1, r) = r*a(n, r) + (n+1-r)*a(n, r-1) + n*a(n-1, r-1).
exp(-t)/(1 - exp((x-1)t)/(x-1)) = 1 + x*t^2/2! + (x+x^2)*t^3/3! + (x+7x^2+x^3)*t^4/4! + (x+21x^2+21x^3+x^4)*t^5/5! + ... - Philippe Deléham, Jun 11 2004
E.g.f.: (y-1)/(y*exp(x) - exp(x*y)). - Mamuka Jibladze, Nov 08 2024
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
Comments