cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046739 Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.

Original entry on oeis.org

0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
Offset: 1

Views

Author

Keywords

Comments

From Emeric Deutsch, May 25 2009: (Start)
T(n,k) is the number of derangements of [n] having k excedances. Example: T(4,2)=7 because we have 3*14*2, 3*4*12, 4*3*12, 2*14*3, 2*4*13, 3*4*21, 4*3*21, each with two excedances (marked). An excedance of a permutation p is a position i such that p(i) > i.
Sum_{k>=1} k*T(n,k) = A000274(n+1). (End)
The triangle 1;1,1;1,7,1;... has general term T(n,k) = Sum_{j=0..n+2} (-1)^(n-j)*C(n+2,j)*A123125(j,k+2) and bivariate g.f. ((1-y)*(y*exp(2*x*y) + exp(x*(y+1))(y^2 - 4*y + 1) + y*exp(2*x)))/(exp(x*y) - y*exp(x))^3. - Paul Barry, May 10 2011
The n-th row is the local h-vector of the barycentric subdivision of a simplex, i.e., the Coxeter complex of type A. See Proposition 2.4 of Stanley's paper below. - Kyle Petersen, Aug 20 2012
T(n,k) is the k-th coefficient of the local h^*-polynomial, or box polynomial, of the s-lecture hall n-simplex with s=(2,3,...,n+1). See Theorem 4.1 of the paper by N. Gustafsson and L. Solus below. - Liam Solus, Aug 23 2018

Examples

			Triangle starts:
  0;
  1;
  1,   1;
  1,   7,   1;
  1,  21,  21,   1;
  1,  51, 161,  51,   1;
  1, 113, 813, 813, 113, 1;
  ...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following bivariate polynomials:
  [1] 0;
  [2] x*y;
  [3] x^2*y +     x*y^2;
  [4] x^3*y +   7*x^2*y^2 +     x*y^3;
  [5] x^4*y +  21*x^3*y^2 +  21*x^2*y^3 +     x*y^4;
  [6] x^5*y +  51*x^4*y^2 + 161*x^3*y^3 +  51*x^2*y^4 +     x*y^5;
  [7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6;
  ...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.)
(End)
		

Crossrefs

Cf. A046740.
Row sums give A000166.
Diagonals give A070313, A070315.
T(2n,n) gives A320337.

Programs

  • Maple
    G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
  • Mathematica
    max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}];
    coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *)
    E1[n_ /; n >= 0, 0] = 1; (* E1(n,k) are the Eulerian numbers *)
    E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *)
    Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]),{t,0,n}]]],{n,0,12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
  • PARI
    T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])}
    { my(A=T(10));for(i=1,#A,print(A[i])) } \\ Andrew Howroyd, Nov 13 2024

Formula

a(n+1, r) = r*a(n, r) + (n+1-r)*a(n, r-1) + n*a(n-1, r-1).
exp(-t)/(1 - exp((x-1)t)/(x-1)) = 1 + x*t^2/2! + (x+x^2)*t^3/3! + (x+7x^2+x^3)*t^4/4! + (x+21x^2+21x^3+x^4)*t^5/5! + ... - Philippe Deléham, Jun 11 2004
E.g.f.: (y-1)/(y*exp(x) - exp(x*y)). - Mamuka Jibladze, Nov 08 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000