cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046748 Row sums of triangle A046521.

Original entry on oeis.org

1, 3, 13, 61, 295, 1447, 7151, 35491, 176597, 880125, 4390901, 21920913, 109486993, 547018941, 2733608905, 13662695645, 68294088535, 341399727335, 1706739347095, 8532741458075, 42660172763995, 213287735579135, 1066389745361635, 5331765761680895
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 1999

Keywords

Comments

Hankel transform is A082761. - Paul Barry, Apr 14 2010

Examples

			G.f. = 1 + 3*x + 13*x^2 + 61*x^3 + 295*x^4 + 1447*x^5 + 7151*x^6 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!( Sqrt(1-4*x)/(1-5*x) )); // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ Sqrt[ 1 - 4 x] / (1 - 5 x), {x, 0, n}]; (* Michael Somos, May 25 2014 *)
    a[ n_] := Binomial[ 2 n, n] Hypergeometric2F1[ -n, 1, 1/2, -1/4]; (* Michael Somos, May 25 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sqrt( 1 - 4*x + x * O(x^n)) / (1 - 5*x), n))}; /* Michael Somos, May 25 2014 */
    
  • SageMath
    def A046748_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt(1-4*x)/(1-5*x) ).list()
    A046748_list(40) # G. C. Greubel, Jul 28 2024

Formula

a(n) = binomial(2*n, n)*Sum_{k=0..n} binomial(n, k)/binomial(2*k, k).
a(n) = 5^n - 2*A046714(n-1), A046714(-1) := 0.
a(n) = 5*a(n-1) - 2*A000108(n-1).
G.f.: sqrt(1-4*x)/(1-5*x).
a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 1, a(-1) := 0, a(0)=1 (homogeneous recursion).
a(n) = binomial(2*n,n)*hypergeom([ -n,1 ],[ 1/2 ],-1/4) (hypergeometric 2F1 form).
0 = a(n)*(+400*a(n+1) - 330*a(n+2) + 50*a(n+3)) + a(n+1)*(-30*a(n+1) + 71*a(n+2) - 15*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 25 2014
a(n) ~ 5^(n - 1/2). - Vaclav Kotesovec, Jul 07 2016
D-finite with recurrence n*a(n) +3*(-3*n+2)*a(n-1) +10*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jul 23 2017