A046758 Equidigital numbers.
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 135, 137, 139
Offset: 1
Examples
For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence.
References
- Bernardo Recamán Santos, Equidigital representation: problem 2204, J. Rec. Math., Vol. 27, No. 1 (1995), pp. 58-59.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. P. Delahaye, "Primes Hunters", Economical and Prodigal Numbers (Text in French). [Wayback Machine link]
- R. G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Eric Weisstein's World of Mathematics, Equidigital Number..
- Wikipedia, Equidigital number.
Programs
-
Haskell
a046758 n = a046758_list !! (n-1) a046758_list = filter (\n -> a050252 n == a055642 n) [1..] -- Reinhard Zumkeller, Jun 21 2011
-
Mathematica
edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range[140], edQ]] (* Jayanta Basu, Jun 28 2013 *)
-
PARI
for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ Derek Orr, Jan 30 2015
-
Python
from itertools import count, islice from sympy import factorint def A046758_gen(): # generator of terms return (n for n in count(1) if n == 1 or len(str(n)) == sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items())) A046758_list = list(islice(A046758_gen(),20)) # Chai Wah Wu, Feb 18 2022
Formula
Extensions
More terms from Eric W. Weisstein
Comments