A046764 Sum of the 4th powers of the divisors of n is divisible by n.
1, 34, 84, 156, 364, 492, 1092, 3444, 5617, 6396, 11234, 22468, 33628, 44772, 67404, 100884, 157276, 190978, 292084, 435708, 437164, 471828, 549687, 569772, 709937, 742612, 763912, 876252, 986076, 1099374, 1118480, 1289484, 1311492, 1419874
Offset: 1
Keywords
Examples
n=84, Sigma[ 4,84 ] = Sum(d^4) = 53771172 = 640133*84 = 640133*n; n=5617, Sigma[ 4,5617 ] = 995446331475844 = 5617*17722083332, a multiple of n.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..200 from T. D. Noe)
- Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373.
Programs
-
Mathematica
Do[If[Mod[DivisorSigma[4, n], n]==0, Print[n]], {n, 1, 2*10^6}] Select[Range[1500000],Divisible[DivisorSigma[4,#],#]&] (* Harvey P. Dale, Jun 25 2014 *)
-
PARI
is(n)=sigma(n, 4)%n==0 \\ Charles R Greathouse IV, Feb 04 2013
Formula
Mod[ Sigma [ 4, n ], n ]=0.
Extensions
More terms from Robert G. Wilson v, Jun 09 2000
Comments