cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046791 A046790 has several definitions, one of which is: "Numbers i such that there is a smaller positive number j such that (i+j)/2 and sqrt(i*j) are integers". The present sequence gives the smallest choice for j.

Original entry on oeis.org

2, 1, 4, 2, 6, 1, 3, 2, 4, 10, 5, 12, 1, 2, 6, 14, 7, 4, 2, 3, 20, 1, 22, 10, 6, 2, 11, 4, 26, 12, 28, 13, 30, 1, 5, 14, 2, 15, 34, 4, 3, 6, 38, 17, 10, 2, 42, 1, 19, 7, 44, 20, 46, 21, 12, 4, 22, 2, 23, 52, 6, 14, 1, 58, 26, 60, 2, 3, 5, 62, 10, 28, 4, 29, 66, 30, 68, 11, 31, 70, 2, 1, 6, 74, 33
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

Note that A046790 is the complement of A078779. - Omar E. Pol, Jun 11 2016

Examples

			From _Vladimir Shevelev_, Jun 07 2016: (Start)
A046790(5)=24 with even squarefree part (6), so a(5) = 6;
A046790(12)=48 with odd squarefree part (3), so a(12) = 3*4=12.
(End)
		

Crossrefs

Cf. A046790.

Programs

  • PARI
    a(n) = my(n=A046790(n),f=factor(n),p=n%2);f[,2]=f[,2]%2;r=prod(i=1,matsize(f)[1],f[i,1]^f[i,2]);r*=(4^(n%2==0&&r%2==1)) \\ David A. Corneth, Jun 07 2016

Formula

Let b(n)=A046790(n). Let k=k(n) be the greatest number whose square divides b(n) and is such that b(n) and b(n)/k^2 are of the same parity. Then a(n) = b(n)/k^2. - Vladimir Shevelev, Jun 07 2016
Or, equivalently, a(n) is the squarefree part s(n) of b(n), if either b(n) is odd or s(n) is even. Otherwise, when b(n) is even, but s(n) is odd, a(n)=4*s(n). - David A. Corneth, Jun 07 2016

Extensions

Entry revised by N. J. A. Sloane, with help from Don Reble and several OEIS editors. Jun 07 2016