A046839 Numbers k such that the number of divisors of k divides the sum of cubes of divisors of k.
1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103
Offset: 1
Keywords
Examples
64 is a term since it has 7 divisors, and sigma_3(64) = 299593 = 7 * 42799 is divisble by 7.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Magma
[n: n in [1..110] | IsZero(DivisorSigma(3, n) mod NumberOfDivisors(n))]; // Bruno Berselli, Apr 11 2013
-
Mathematica
Select[Range[103], Divisible[DivisorSigma[3, #], DivisorSigma[0, #]] &] (* Jayanta Basu, Jun 29 2013 *)
-
PARI
isok(n) = sigma(n, 3) % numdiv(n) == 0; \\ Michel Marcus, May 13 2018
Comments