A046840 Numbers k such that the number of divisors of k divides the sum of the 4th powers of the divisors of k.
1, 3, 4, 5, 7, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 100, 101, 103, 105, 107, 108, 109, 111
Offset: 1
Keywords
Examples
k = 16 is a term since it has 5 divisors, and sigma_4(16) = 69905 is divisible by 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Magma
[n: n in [1..120] | IsZero(DivisorSigma(4, n) mod NumberOfDivisors(n))]; // Bruno Berselli, Apr 11 2013
-
Mathematica
Select[Range[120], Divisible[DivisorSigma[4, #], DivisorSigma[0, #]] &] (* Amiram Eldar, Mar 17 2025 *)
-
PARI
isok(n) = sigma(n, 4) % numdiv(n) == 0; \\ Michel Marcus, May 13 2018
Comments