A046878 Numerator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 0.
0, 1, 1, 5, 2, 8, 13, 151, 32, 83, 73, 1433, 647, 15341, 28211, 10447, 1216, 19345, 18181, 651745, 1542158, 1463914, 2786599, 122289917, 29229544, 140001721, 134354573, 774885169, 745984697, 41711914513, 80530073893, 4825521853483
Offset: 0
Examples
Rational sequence starts: 0, 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105,...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle
Programs
-
Maple
a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n: seq(numer(simplify(a(n))),n=0..31); # Peter Luschny, Nov 20 2015
-
Mathematica
a[0] = 0; a[n_] := (1/n) Sum[1/Binomial[n-1, k], {k, 0, n-1}] // Numerator; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Sep 28 2016 *)
-
Maxima
a(n):=if n=0 then 0 else num((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
-
PARI
vector(40, n, n--; numerator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015
Formula
a(n) = numerator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bernoulli(k)* stirling1(n-1,k)), n>0, a(0)=0. - Vladimir Kruchinin, Nov 20 2015
a(n) = numerator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015
Comments