cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046878 Numerator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 0.

Original entry on oeis.org

0, 1, 1, 5, 2, 8, 13, 151, 32, 83, 73, 1433, 647, 15341, 28211, 10447, 1216, 19345, 18181, 651745, 1542158, 1463914, 2786599, 122289917, 29229544, 140001721, 134354573, 774885169, 745984697, 41711914513, 80530073893, 4825521853483
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the numerator of (1/2^n)*Sum_{k=1..n} 2^k/k. - Groux Roland, Jan 13 2009

Examples

			Rational sequence starts: 0, 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105,...
		

Crossrefs

See A046825, the main entry for this sequence. Cf. A046879.

Programs

  • Maple
    a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n:
    seq(numer(simplify(a(n))),n=0..31); # Peter Luschny, Nov 20 2015
  • Mathematica
    a[0] = 0; a[n_] := (1/n) Sum[1/Binomial[n-1, k], {k, 0, n-1}] // Numerator; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Sep 28 2016 *)
  • Maxima
    a(n):=if n=0 then 0 else num((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
    
  • PARI
    vector(40, n, n--; numerator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015

Formula

a(n) = numerator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bernoulli(k)* stirling1(n-1,k)), n>0, a(0)=0. - Vladimir Kruchinin, Nov 20 2015
a(n) = numerator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015