cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046879 Denominator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 1.

Original entry on oeis.org

1, 1, 1, 6, 3, 15, 30, 420, 105, 315, 315, 6930, 3465, 90090, 180180, 72072, 9009, 153153, 153153, 5819814, 14549535, 14549535, 29099070, 1338557220, 334639305, 1673196525, 1673196525, 10039179150, 10039179150, 582272390700, 1164544781400
Offset: 0

Views

Author

Keywords

Comments

For n>=1 a(n) is the denominator of (1/2^n)*Sum_{k=1..n} 2^k/k. - Groux Roland, Jan 13 2009

Crossrefs

See A046825, the main entry for this sequence. Cf. A046878.

Programs

  • Maple
    a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n:
    seq(denom(simplify(a(n))),n=0..30); # Peter Luschny, Nov 20 2015
  • Mathematica
    Denominator[Simplify[-2*LerchPhi[2, 1, # + 1] - I*Pi/2^#]] & /@
    Range[0, 100] (* Julien Kluge, Jul 21 2016 *)
  • Maxima
    a(n):=if n=0 then 1 else denom((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
    
  • PARI
    vector(30, n, n--; denominator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015

Formula

a(n) = denominator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bern(k) * stirling1(n-1,k)), n>0, a(0)=1. - Vladimir Kruchinin, Nov 20 2015
a(n) = denominator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015