A046879 Denominator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 1.
1, 1, 1, 6, 3, 15, 30, 420, 105, 315, 315, 6930, 3465, 90090, 180180, 72072, 9009, 153153, 153153, 5819814, 14549535, 14549535, 29099070, 1338557220, 334639305, 1673196525, 1673196525, 10039179150, 10039179150, 582272390700, 1164544781400
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle
Programs
-
Maple
a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n: seq(denom(simplify(a(n))),n=0..30); # Peter Luschny, Nov 20 2015
-
Mathematica
Denominator[Simplify[-2*LerchPhi[2, 1, # + 1] - I*Pi/2^#]] & /@ Range[0, 100] (* Julien Kluge, Jul 21 2016 *)
-
Maxima
a(n):=if n=0 then 1 else denom((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
-
PARI
vector(30, n, n--; denominator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015
Formula
a(n) = denominator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bern(k) * stirling1(n-1,k)), n>0, a(0)=1. - Vladimir Kruchinin, Nov 20 2015
a(n) = denominator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015
Comments