A046881 Smallest number that is sum of 2 positive distinct n-th powers in 2 different ways.
5, 65, 1729, 635318657
Offset: 1
Examples
5 = 1^1 + 4^1 = 2^1 + 3^1; 65 = 1^2 + 8^2 = 4^2 + 7^2; 1729 = 1^3 + 12^3 = 9^3 + 10^3; etc.
References
- R. Alter, Computations and generalizations on a remark of Ramanujan, pp. 182-196 of "Analytic Number Theory (Philadelphia, 1980)", ed. M. I. Knopp, Lect. Notes Math., Vol. 899, 1981.
Links
- Christian Boyer, Squares of Cubes.
- R. L. Ekl, New results in equal sums of like powers, Math. Comp. 67 (1998) 1309-1315, Table 9.
- Eric Weisstein's World of Mathematics, Diophantine Equation--5th Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--6th Powers
- Tom Womack, Equal Sums of Like Powers [blocked link].
Crossrefs
Cf. A016078.
Programs
-
Mathematica
(* This naive program is not convenient for n > 3 *) r[n_, k_] := Reduce[0 < x < y && x^n + y^n == k, {x, y}, Integers]; a[n_] := Catch[ For[ k = 1, True, k++, rk = r[n, k]; If[rk =!= False, If[ Head[rk] == Or && Length[rk] == 2, Print["n = ", n, ", k = ", k]; Throw[k]]]]]; Table[a[n], {n, 1, 3}] (* Jean-François Alcover, Jul 30 2013 *)
Comments