cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A088687 Numbers that can be represented as j^4 + k^4, with 0 < j < k, in exactly one way.

Original entry on oeis.org

17, 82, 97, 257, 272, 337, 626, 641, 706, 881, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Examples

			17 = 1^4 + 2^4.
635318657 = 133^4 + 134^4 is absent because it is also 59^4 + 158^4 (see A046881, A230562)
		

Crossrefs

Programs

  • Maple
    N:= 2*10^4: # for terms <= N
    V:= Vector(N):
    for j from 1 while 2*j^4 < N do
      for k from j+1 do
        r:= j^4 + k^4;
        if r > N then break fi;
        V[r]:= V[r]+1;
    od od:
    select(t -> V[t] = 1, [$1..N]); $ Robert Israel, Dec 15 2019
  • Mathematica
    lst={};Do[Do[x=a^4;Do[y=b^4;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/4)],a+1,-1}],{a,Floor[n^(1/4)],1,-1}],{n,4*7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006

A374418 a(n) is the smallest number which can be represented as the sum of 2 distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.

Original entry on oeis.org

7, 325, 87539319
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Comments

See also comments in A338799.

Examples

			a(2) = 325 = 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2.
a(3) = 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.
		

Crossrefs

A374421 a(n) is the smallest number which can be represented as the sum of 3 distinct positive n-th powers in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

8, 62, 1009, 6578, 1375298099, 160426514
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Comments

a(7) > 10^20, if it is not -1. - Michael S. Branicky, Jul 09 2024

Examples

			a(5) = 1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5.
a(6) = 160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
		

Crossrefs

A374422 a(n) is the smallest number which can be represented as the sum of 3 distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.

Original entry on oeis.org

9, 101, 5104, 811538
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Examples

			a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
a(4) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
		

Crossrefs

A374423 a(n) is the smallest number which can be represented as the sum of 3 distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.

Original entry on oeis.org

10, 161, 13896, 5978882
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Examples

			a(3) = 13896 = 1^3 + 12^3 + 23^3 = 2^3 + 4^3 + 24^3 = 4^3 + 18^3 + 20^3 = 9^3 + 10^3 + 23^3.
a(4) = 5978882 = 3^4 + 40^4 + 43^4 = 8^4 + 37^4 + 45^4 = 15^4 + 32^4 + 47^4 = 23^4 + 25^4 + 48^4.
		

Crossrefs

A374424 a(n) is the smallest number which can be represented as the sum of 4 distinct positive n-th powers in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

12, 90, 1036, 6834, 4062500, 160426515, 2056364173794800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Examples

			a(5) = 4062500 = 1^5 + 14^5 + 16^5 + 19^5 = 5^5 + 10^5 + 15^5 + 20^5.
a(6) = 160426515 = 1^6 + 3^6 + 19^6 + 22^6 = 1^6 + 10^6 + 15^6 + 23^6.
		

Crossrefs

Extensions

a(7) from Michael S. Branicky, Jul 09 2024

A374425 a(n) is the smallest number which can be represented as the sum of 4 distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.

Original entry on oeis.org

13, 78, 1521, 16578, 1479604544, 1885800643779
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Examples

			a(4) = 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4.
a(5) = 1479604544 = 3^5 + 48^5 + 52^5 + 61^5 = 13^5 + 36^5 + 51^5 + 64^5 = 18^5 + 36^5 + 44^5 + 66^5.
		

Crossrefs

Extensions

a(6) from Michael S. Branicky, Jul 09 2024

A088703 Numbers of form x^5 + y^5, x,y > 0 and x <> y.

Original entry on oeis.org

33, 244, 275, 1025, 1056, 1267, 3126, 3157, 3368, 4149, 7777, 7808, 8019, 8800, 10901, 16808, 16839, 17050, 17831, 19932, 24583, 32769, 32800, 33011, 33792, 35893, 40544, 49575, 59050, 59081, 59292, 60073, 62174, 66825, 75856, 91817
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Comments

Up to n = 100000, no instances occur where n is the sum of two distinct 5th powers in two different ways. Conjecture: no number can be expressed as the sum of two 5th powers in more than one way: A046881.

Examples

			33 = 2^5 + 1^5, so 33 is in sequence. 64 = 2^5 + 2^5 is not.
		

References

  • Guy, Richard K., Unsolved Problems in Number Theory, 2nd Ed., Springer-Verlag(1994), pp. 140.

Crossrefs

Subsequence of A003347.
Cf. A088687 (4th powers), A088677 (6th powers), A046881 (bounds for double reps).

Programs

  • Mathematica
    lst={};e=5;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
    Union[#[[1]]^5+#[[2]]^5&/@Subsets[Range[10],{2}]] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k", ")) ); }
    powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Ralf Stephan, Dec 30 2004

A016078 Smallest number that is sum of 2 positive n-th powers in 2 different ways.

Original entry on oeis.org

4, 50, 1729, 635318657
Offset: 1

Views

Author

Robert G. Wilson v, Dec 11 1999

Keywords

Comments

If it exists, a(5) > 1.02*10^26 (see eqn. (27) at the Mathworld link). - Jon E. Schoenfield, Jan 05 2019

Examples

			4 = 1^1 + 3^1 = 2^1 + 2^1;
50 = 1^2 + 7^2 = 5^2 + 5^2,
1729 = 1^3 + 12^3 = 9^3 + 10^3;
635318657 = 59^4 + 158^4 = 133^4 + 134^4 = A018786(1).
		

Crossrefs

Programs

Formula

If A230561(n) exists, then a(n) <= A230561(n) for n > 1, with equality at least for n = 2, and inequality at least for n = 3. - Jonathan Sondow, Oct 24 2013 [Comment edited by N. J. A. Sloane, Apr 03 2021]

A343077 a(n) is the smallest number that is the sum of n positive 4th powers in two ways.

Original entry on oeis.org

635318657, 2673, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292
Offset: 2

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,4,2) in Alter's notation.

Examples

			a(2) = 635318657 = 59^4 + 158^4 = 133^4 + 134^4.
a(3) = 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4.
		

Crossrefs

Formula

a(n) = n + 240 for n >= 16.
Showing 1-10 of 19 results. Next