A046927 Number of ways to express 2n+1 as p+2q where p and q are primes.
0, 0, 0, 1, 2, 2, 2, 2, 4, 2, 3, 3, 3, 4, 4, 2, 5, 3, 4, 4, 5, 4, 6, 4, 4, 7, 5, 3, 7, 3, 3, 7, 7, 5, 7, 4, 4, 8, 7, 5, 8, 4, 7, 8, 7, 4, 11, 5, 6, 9, 6, 5, 12, 6, 6, 10, 8, 6, 11, 7, 5, 11, 8, 6, 10, 6, 6, 13, 8, 5, 13, 6, 9, 12, 8, 6, 14, 8, 6, 11, 10, 9, 16, 5, 8, 13, 9, 9, 14, 7, 6, 14
Offset: 0
Keywords
References
- L. E. Dickson, "History of the Theory of Numbers", Vol. I (Amer. Math. Soc., Chelsea Publ., 1999); see p. 424.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- L. Hodges, A lesser-known Goldbach conjecture, Math. Mag., 66 (1993), 45-47.
- E. Lemoine, L'intermédiaire des math., 1 (1894), p. 179; 3 (1896), p. 151.
- H. Levy, On Goldbach's Conjecture, Math. Gaz. 47 (1963), 274.
- Vladimir Shevelev, Binary additive problems: recursions for numbers of representations, arXiv:0901.3102 [math.NT], 2009-2013.
- V. Shevelev, Re: New sequence, SeqFan list, April 2017.
- Eric Weisstein's World of Mathematics, Levy's Conjecture
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
a[n_] := (ways = 0; Do[p = 2k + 1; q = n-k; If[PrimeQ[p] && PrimeQ[q], ways++], {k, 1, n}]; ways); Table[a[n], {n, 0, 91}] (* Jean-François Alcover, Dec 05 2012 *) Table[Count[FrobeniusSolve[{1, 2}, 2 n + 1], {?PrimeQ}], {n, 0, 91}] (* Jan Mangaldan, Apr 08 2013 *)
-
PARI
a(n)=my(s);n=2*n+1;forprime(p=2,n\2,s+=isprime(n-2*p));s \\ Charles R Greathouse IV, Jul 17 2013
Formula
For n >= 1, a(n) = Sum_{3<=p<=n+1, p prime} A((2*n + 1 - p)/2) + Sum_{2<=q<=(n+1)/2, q prime} B(2*n + 1 - 2*q) - A((n+1)/2)*B(n+1) - a(n-1) - ... - a(0), where A(n) = A000720(n), B(n) = A033270(n). - Vladimir Shevelev, Jul 12 2013
Extensions
Additional references from Zhi-Wei Sun, Jun 10 2008
Comments