A046936 Same rule as Aitken triangle (A011971) except a(0,0)=0, a(1,0)=1.
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 9, 12, 16, 22, 31, 31, 40, 52, 68, 90, 121, 121, 152, 192, 244, 312, 402, 523, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 12611, 15080, 18072, 21708, 26140
Offset: 0
Examples
Triangle starts: 0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 9, 12, 16, 22, 31, 31, 40, 52, 68, 90, 121, 121, 152, 192, 244, 312, 402, 523, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 12611, 15080, ...
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968
- Don Knuth, Email to N. J. A. Sloane, Jan 29 2018
Programs
-
Haskell
a046936 n k = a046936_tabl !! n !! k a046936_row n = a046936_tabl !! n a046936_tabl = [0] : iterate (\row -> scanl (+) (last row) row) [1,1] -- Reinhard Zumkeller, Jan 01 2014
-
Mathematica
a[0, 0] = 0; a[1, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2013 *)
-
Python
from itertools import accumulate def A046936(): # Compare function Gould_diag in A121207. yield [0] accu = [1, 1] while True: yield accu accu = list(accumulate([accu[-1]] + accu)) g = A046936() [next(g) for in range(9)] # _Peter Luschny, Apr 25 2016