cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135249 a(n) = number of bits in the binary expansion of A046967(n).

Original entry on oeis.org

2, 4, 16, 106, 1156, 15016, 255256, 4849846, 111546436, 3234846616, 100280245066, 3710369067406, 152125131763606, 6541380665835016, 307444891294245706, 16294579238595022366, 961380175077106319536, 58644190679703485491636, 3929160775540133527939546, 278970415063349480483707696
Offset: 1

Views

Author

Artur Jasinski, Nov 24 2007

Keywords

Comments

All the terms in A046967 are of the form 2^k.

Crossrefs

Programs

  • Mathematica
    a = {}; c = 2; Do[d = Length[IntegerDigits[c, 2]]; c = c^Prime[n]; AppendTo[a, d], {n, 2, 9}]; a
    1 + FoldList[Times, 1, Prime[Range[2, 20]]] (* Amiram Eldar, Oct 12 2024 *)

Formula

From Amiram Eldar, Oct 13 2024: (Start)
a(n) = A070939(A046967(n)).
a(n) = 1 + log_2(A046967(n)) = 1 + A070826(n). (End)

Extensions

More terms from Amiram Eldar, Oct 12 2024

A135250 a(n) = number of digits in the decimal expansion of A046967(n).

Original entry on oeis.org

1, 1, 5, 32, 348, 4520, 76840, 1459949, 33578823, 973785863, 30187361738, 1116932384273, 45794227755181, 1969151793472765, 92550134293219955, 4905157117540657588, 289404269934898797687, 17653660466028826658882, 1182795251223931386145053, 83978462836899128416298742
Offset: 1

Views

Author

Artur Jasinski, Nov 24 2007

Keywords

Comments

All the terms in A046967 are of the form 2^k.

Crossrefs

Programs

  • Mathematica
    a = {}; c = 2; Do[d = Length[IntegerDigits[c, 10]]; c = c^Prime[n]; AppendTo[a, d], {n, 2, 9}]; a
    IntegerLength/@RecurrenceTable[{a[1]==2,a[n]==a[n-1]^Prime[n]}, a[n], {n,9}] (* Harvey P. Dale, Jul 18 2011 *)
    1 + Floor[Log10[2] * FoldList[Times, 1, Prime[Range[2, 20]]]] (* Amiram Eldar, Oct 12 2024 *)

Formula

From Amiram Eldar, Oct 13 2024: (Start)
a(n) = A055642(A046967(n)).
a(n) = floor(log_10(2) * A070826(n)). (End)

Extensions

a(9) from Harvey P. Dale, Jul 18 2011
More terms from Amiram Eldar, Oct 12 2024
Showing 1-2 of 2 results.