cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046968 Numerators of coefficients in Stirling's expansion for log(Gamma(z)).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 1

Views

Author

Douglas Stoll (dougstoll(AT)email.msn.com)

Keywords

Comments

A001067(n) = a(n) if n<574; A001067(574) = 37*a(574). - Michael Somos, Feb 01 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

Crossrefs

Denominators given by A046969.
Similar to but different from A001067. See A090495, A090496.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n*(2*n-1))) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n*(2*n-1))): n in [1..25]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    seq(numer(bernoulli(2*n)/(2*n*(2*n-1))), n = 1..25); # G. C. Greubel, Sep 19 2019
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n(2n - 1))], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
    s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^42; DeleteCases[CoefficientList[s, 1/z], 0] // Numerator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    a(n)=if(n<1,0,numerator(bernfrac(2*n)/(2*n)/(2*n-1)))
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n*(2*n-1))) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

From numerator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2*Pi)*z^(z-0.5)*exp(-z)*exp(J(z)).

Extensions

More terms from Frank Ellermann, Jun 13 2001