A046968 Numerators of coefficients in Stirling's expansion for log(Gamma(z)).
1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
- L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..314
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
- R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016.
- N. Elezovic, Asymptotic Expansions of Central Binomial Coefficients and Catalan Numbers, J. Int. Seq. 17 (2014) # 14.2.1.
- Eric Weisstein's World of Mathematics, Stirling's Series
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
GAP
List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n*(2*n-1))) ); # G. C. Greubel, Sep 19 2019
-
Magma
[Numerator(Bernoulli(2*n)/(2*n*(2*n-1))): n in [1..25]]; // G. C. Greubel, Sep 19 2019
-
Maple
seq(numer(bernoulli(2*n)/(2*n*(2*n-1))), n = 1..25); # G. C. Greubel, Sep 19 2019
-
Mathematica
Table[ Numerator[ BernoulliB[2n]/(2n(2n - 1))], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *) s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^42; DeleteCases[CoefficientList[s, 1/z], 0] // Numerator (* Jean-François Alcover, Jun 13 2017 *)
-
PARI
a(n)=if(n<1,0,numerator(bernfrac(2*n)/(2*n)/(2*n-1)))
-
Sage
[numerator(bernoulli(2*n)/(2*n*(2*n-1))) for n in (1..25)] # G. C. Greubel, Sep 19 2019
Formula
From numerator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2*Pi)*z^(z-0.5)*exp(-z)*exp(J(z)).
Extensions
More terms from Frank Ellermann, Jun 13 2001
Comments