cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046969 Denominators of coefficients in Stirling's expansion for log(Gamma(z)).

Original entry on oeis.org

12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, 5796, 1506960, 300, 93960, 2492028, 505920, 396, 2418179400, 444, 21106800, 3109932, 118680, 25380, 104700960, 6468, 324360, 2283876, 382800, 40356, 201025024200, 732
Offset: 1

Views

Author

Douglas Stoll, dougstoll(AT)email.msn.com

Keywords

Comments

From Lorenzo Sauras Altuzarra, Oct 13 2020: (Start)
Conjecture I: if n > 2, then a(A005382(n))/12 is prime.
Conjecture II: if a(n)/12 is prime, then a(n-1)/12 - (n-1), a(n)/12 - n and a(n+2)/12 - (n+2) are multiples of 6. (End)

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

Crossrefs

Numerators are given in A046968. Cf. A005382.

Programs

  • Maple
    a := n -> denom(bernoulli(2*n)/(2*n*(2*n-1))): # Lorenzo Sauras Altuzarra, Oct 13 2020
  • Mathematica
    Table[ Denominator[ BernoulliB[2n]/(2n(2n - 1))], {n, 31}] (* Robert G. Wilson v, Sep 21 2006 *)
    s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^62;
    DeleteCases[CoefficientList[s, 1/z], 0] // Denominator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    a(n)=if(n<1,0,denominator(bernfrac(2*n)/(2*n)/(2*n-1)))

Formula

From denominator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2pi)*z^(z-0.5)*exp(-z)*exp(J(z)).

Extensions

More terms from Frank Ellermann, Jun 13 2001
Bayes reference from Henry Bottomley, Jun 03 2003