cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046968 Numerators of coefficients in Stirling's expansion for log(Gamma(z)).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 1

Views

Author

Douglas Stoll (dougstoll(AT)email.msn.com)

Keywords

Comments

A001067(n) = a(n) if n<574; A001067(574) = 37*a(574). - Michael Somos, Feb 01 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

Crossrefs

Denominators given by A046969.
Similar to but different from A001067. See A090495, A090496.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n*(2*n-1))) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n*(2*n-1))): n in [1..25]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    seq(numer(bernoulli(2*n)/(2*n*(2*n-1))), n = 1..25); # G. C. Greubel, Sep 19 2019
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n(2n - 1))], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
    s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^42; DeleteCases[CoefficientList[s, 1/z], 0] // Numerator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    a(n)=if(n<1,0,numerator(bernfrac(2*n)/(2*n)/(2*n-1)))
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n*(2*n-1))) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

From numerator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2*Pi)*z^(z-0.5)*exp(-z)*exp(J(z)).

Extensions

More terms from Frank Ellermann, Jun 13 2001

A230282 Largest k such that (k*n)! >= (k!)^(n+1).

Original entry on oeis.org

1, 1, 6, 64, 679, 8468, 126784, 2238565, 45605124, 1053117974, 27182818156, 775557529509, 24236473829015, 823299898542083, 30205566231626957, 1190319005015526817, 50143449209799256306, 2248672171655330927835
Offset: 0

Views

Author

Alex Ratushnyak, Oct 14 2013

Keywords

Examples

			Biggest k such that (3*k)! >= k!^4 is k = 64, so a(3) = 64.
a(10) = 27182818156 because k = 27182818156 satisfies the inequality (k*10)! >= (k!)^11, but k = 27182818157 does not. To verify this, note that taking the logarithm of each side of the inequality gives log((k*10)!) >= 11*log(k!), and use the series expression log(m!) = log(2*Pi*m)/2 + m*log(m) - m + (1/12)/m - (1/360)/m^3 + (1/1260)/m^5 - ... (where the numerators and denominators of the fractions 1/12, -1/360, 1/1260, etc., are from A046968 and A046969, respectively), to get, at k = 27182818156, log(271828181560!) = 6884982704601.26... for the left hand side of the inequality, and the slightly smaller result 11*log(27182818156!) = 6884982704600.83... for the right hand side; then repeat the calculations using k = 27182818157, and observe that this makes the right hand side slightly larger than the left hand side. - _Jon E. Schoenfield_, Oct 23 2013
		

Crossrefs

Programs

  • Mathematica
    Table[k = 0; While[(k n)! >= (k!)^(n + 1), k++]; k - 1, {n, 0, 4}] (* T. D. Noe, Oct 18 2013 *)
  • Python
    import math
    for n in range(8):
      for k in range(10000000):
        if math.factorial(n*k) < math.factorial(k)**(n+1):
          print(k-1, end=', ')
          break

Formula

For n > 1, a(n) = floor(e*(n^n) - ((n^2-1)*log(n) + n*(1+log(2*Pi)))/2) [conjectural, but verified for all n in 2..5000]. - Jon E. Schoenfield, Oct 22 2013

Extensions

a(7)-a(17) from Jon E. Schoenfield, Oct 22 2013

A127585 Exponential error term from Stirling's Approximation.

Original entry on oeis.org

1, 1, 18, 345, 10243, 437769, 25260317, 1873346813, 172254143084, 19114537903943, 2506628271002200, 382005168783773474, 66734799966312471195, 13212509243902296154744, 2936153006332857671962341, 726345521215072990990045577, 198595552305314906351047196508
Offset: 0

Views

Author

Jonathan Vos Post, Apr 02 2007

Keywords

Examples

			a(1) = Floor[(sqrt(2*pi) * (1^1) * (1^(1/2))) - 1! ] = Floor(1.50662827) = 1.
a(2) = Floor[(sqrt(2*pi) * (2^2) * (2^(2/2))) - 2! ] = Floor(18.0530262) = 18.
		

Crossrefs

Formula

a(n) = floor(sqrt(2*Pi)*(n^n)*(n^(n/2))) - n!.

Extensions

More terms from Alois P. Heinz, Jan 24 2024
Showing 1-3 of 3 results.