cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046977 Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).

Original entry on oeis.org

1, 2, 24, 720, 8064, 3628800, 95800320, 87178291200, 4184557977600, 6402373705728000, 97316080327065600, 1124000727777607680000, 9545360026665222144000, 403291461126605635584000000, 3209350995912777478963200000, 265252859812191058636308480000000
Offset: 0

Views

Author

Keywords

Examples

			sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...
sech(x) = 1 - 1/2 *x^2 + 5/24 *x^4 - 61/720 *x^6 + 277/8064 *x^8 - ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    ZBS := z -> (Zeta(0,z,1/4) - Zeta(0,z,3/4))/(2^z-2):
    R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:
    seq(denom(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015
  • Mathematica
    Table[ EulerE[n]/n! // Denominator, {n, 0, 30, 2}] (* Jean-François Alcover, Oct 04 2012 *)

Formula

A046976(n)/a(n)= A000364(n)/(2n)!.
Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = denominator(R(2*n+1)) and A046976(n) = numerator(R(2*n+1)). - Peter Luschny, Aug 25 2015