cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046976 Numerators of Taylor series for sec(x) = 1/cos(x).

Original entry on oeis.org

1, 1, 5, 61, 277, 50521, 540553, 199360981, 3878302429, 2404879675441, 14814847529501, 69348874393137901, 238685140977801337, 4087072509293123892361, 13181680435827682794403, 441543893249023104553682821, 2088463430347521052196056349
Offset: 0

Views

Author

Keywords

Comments

Also numerator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k>=0} (-1)^k/(2k+1)^m.

Examples

			sec(x) = 1 + (1/2)*x^2 + (5/24)*x^4 + (61/720)*x^6 + (277/8064)*x^8 + (50521/3628800)*x^10 + ...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.
  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Programs

  • Maple
    ZBS := z -> (Zeta(0,z,1/4) - Zeta(0,z,3/4))/(2^z-2):
    R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:
    seq(numer(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015
  • Mathematica
    Numerator[Partition[CoefficientList[Series[Sec[x], {x, 0, 30}], x], 2][[All,1]]]

Formula

a(n)/A046977(n) = A000364(n)/(2n)!.
Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = numerator(R(2*n+1)) and A046977(n) = denominator(R(2*n+1)). - Peter Luschny, Aug 25 2015

A162445 A sequence related to the Beta function.

Original entry on oeis.org

1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
Offset: 0

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).

Crossrefs

Bisection of A050971
Equals 2^(2*n)*A046977(n)

Programs

  • Mathematica
    Denominator[Table[EulerE[2n]/(4n)!!,{n,0,20}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

a(n) = denom(euler(2*n)/(4*n)!!)
Showing 1-2 of 2 results.